< cpp‎ | algorithm
Algorithm library
Execution policies (C++17)
Non-modifying sequence operations
Modifying sequence operations

Operations on uninitialized storage
Partitioning operations
Sorting operations
Binary search operations
Set operations (on sorted ranges)
Heap operations
Minimum/maximum operations

Numeric operations
C library
Defined in header <algorithm>
template< class ForwardIt >
ForwardIt is_sorted_until( ForwardIt first, ForwardIt last );
(1) (since C++11)
template< class ExecutionPolicy, class ForwardIt >
ForwardIt is_sorted_until( ExecutionPolicy&& policy, ForwardIt first, ForwardIt last );
(2) (since C++17)
template< class ForwardIt, class Compare >

ForwardIt is_sorted_until( ForwardIt first, ForwardIt last,

                           Compare comp );
(3) (since C++11)
template< class ExecutionPolicy, class ForwardIt, class Compare >

ForwardIt is_sorted_until( ExecutionPolicy&& policy, ForwardIt first, ForwardIt last,

                           Compare comp );
(4) (since C++17)

Examines the range [first, last) and finds the largest range beginning at first in which the elements are sorted in ascending order.

1) Elements are compared using operator<.
3) Elements are compared using the given binary comparison function comp.
2,4) Same as (1,3), but executed according to policy. These overloads do not participate in overload resolution unless std::is_execution_policy_v<std::decay_t<ExecutionPolicy>> is true


[edit] Parameters

first, last - the range of elements to examine
policy - the execution policy to use. See execution policy for details.
comp - comparison function object (i.e. an object that satisfies the requirements of Compare) which returns ​true if the first argument is less than (i.e. is ordered before) the second.

The signature of the comparison function should be equivalent to the following:

 bool cmp(const Type1 &a, const Type2 &b);

The signature does not need to have const &, but the function object must not modify the objects passed to it.
The types Type1 and Type2 must be such that an object of type ForwardIt can be dereferenced and then implicitly converted to both of them. ​

Type requirements
ForwardIt must meet the requirements of ForwardIterator.

[edit] Return value

The upper bound of the largest range beginning at first in which the elements are sorted in ascending order. That is, the last iterator it for which range [first, it) is sorted.

[edit] Complexity

linear in the distance between first and last

[edit] Exceptions

The overloads with a template parameter named ExecutionPolicy report errors as follows:

  • If execution of a function invoked as part of the algorithm throws an exception,
  • if policy is std::parallel_vector_execution_policy, std::terminate is called
  • if policy is std::sequential_execution_policy or std::parallel_execution_policy, the algorithm exits with an std::exception_list containing all uncaught exceptions. If there was only one uncaught exception, the algorithm may rethrow it without wrapping in std::exception_list. It is unspecified how much work the algorithm will perform before returning after the first exception was encountered.
  • if policy is some other type, the behavior is implementation-defined
  • If the algorithm fails to allocate memory (either for itself or to construct an std::exception_list when handling a user exception), std::bad_alloc is thrown.

[edit] Possible implementation

First version
template<class ForwardIt>
ForwardIt is_sorted_until(ForwardIt first, ForwardIt last)
    if (first != last) {
        ForwardIt next = first;
        while (++next != last) {
            if (*next < *first)
                return next;
            first = next;
    return last;
Second version
template <class ForwardIt, class Compare>
ForwardIt is_sorted_until(ForwardIt first, ForwardIt last, Compare comp) 
    using namespace std::placeholders;
    ForwardIt it = std::adjacent_find(first, last, std::bind(comp, _2, _1));
    return it == last ? last : std::next(it);

[edit] Example

#include <iostream>
#include <algorithm>
#include <iterator>
#include <random>
int main()
    std::random_device rd;
    std::mt19937 g(rd());
    const int N = 6;
    int nums[N] = {3, 1, 4, 1, 5, 9};
    const int min_sorted_size = 4;
    int sorted_size = 0;
    do {
        std::shuffle(nums, nums + N, g);
        int *sorted_end = std::is_sorted_until(nums, nums + N);
        sorted_size = std::distance(nums, sorted_end);
        for (auto i : nums) std::cout << i << ' ';
        std::cout << " : " << sorted_size << " initial sorted elements\n";
    } while (sorted_size < min_sorted_size);

Possible output:

4 1 9 5 1 3  : 1 initial sorted elements
4 5 9 3 1 1  : 3 initial sorted elements
9 3 1 4 5 1  : 1 initial sorted elements
1 3 5 4 1 9  : 3 initial sorted elements
5 9 1 1 3 4  : 2 initial sorted elements
4 9 1 5 1 3  : 2 initial sorted elements
1 1 4 9 5 3  : 4 initial sorted elements

[edit] See also

checks whether a range is sorted into ascending order
(function template)
parallelized version of std::is_sorted_until
(function template)