/*global define*/
define([
'./arrayRemoveDuplicates',
'./BoundingSphere',
'./Cartesian3',
'./Cartographic',
'./ComponentDatatype',
'./CornerType',
'./CorridorGeometryLibrary',
'./defaultValue',
'./defined',
'./defineProperties',
'./DeveloperError',
'./Ellipsoid',
'./Geometry',
'./GeometryAttribute',
'./GeometryAttributes',
'./IndexDatatype',
'./Math',
'./PolygonPipeline',
'./PrimitiveType',
'./Rectangle',
'./VertexFormat'
], function(
arrayRemoveDuplicates,
BoundingSphere,
Cartesian3,
Cartographic,
ComponentDatatype,
CornerType,
CorridorGeometryLibrary,
defaultValue,
defined,
defineProperties,
DeveloperError,
Ellipsoid,
Geometry,
GeometryAttribute,
GeometryAttributes,
IndexDatatype,
CesiumMath,
PolygonPipeline,
PrimitiveType,
Rectangle,
VertexFormat) {
'use strict';
var cartesian1 = new Cartesian3();
var cartesian2 = new Cartesian3();
var cartesian3 = new Cartesian3();
var cartesian4 = new Cartesian3();
var cartesian5 = new Cartesian3();
var cartesian6 = new Cartesian3();
var scratch1 = new Cartesian3();
var scratch2 = new Cartesian3();
function addNormals(attr, normal, left, front, back, vertexFormat) {
var normals = attr.normals;
var tangents = attr.tangents;
var binormals = attr.binormals;
var forward = Cartesian3.normalize(Cartesian3.cross(left, normal, scratch1), scratch1);
if (vertexFormat.normal) {
CorridorGeometryLibrary.addAttribute(normals, normal, front, back);
}
if (vertexFormat.binormal) {
CorridorGeometryLibrary.addAttribute(binormals, left, front, back);
}
if (vertexFormat.tangent) {
CorridorGeometryLibrary.addAttribute(tangents, forward, front, back);
}
}
function combine(computedPositions, vertexFormat, ellipsoid) {
var positions = computedPositions.positions;
var corners = computedPositions.corners;
var endPositions = computedPositions.endPositions;
var computedLefts = computedPositions.lefts;
var computedNormals = computedPositions.normals;
var attributes = new GeometryAttributes();
var corner;
var leftCount = 0;
var rightCount = 0;
var i;
var indicesLength = 0;
var length;
for (i = 0; i < positions.length; i += 2) {
length = positions[i].length - 3;
leftCount += length; //subtracting 3 to account for duplicate points at corners
indicesLength += length*2;
rightCount += positions[i + 1].length - 3;
}
leftCount += 3; //add back count for end positions
rightCount += 3;
for (i = 0; i < corners.length; i++) {
corner = corners[i];
var leftSide = corners[i].leftPositions;
if (defined(leftSide)) {
length = leftSide.length;
leftCount += length;
indicesLength += length;
} else {
length = corners[i].rightPositions.length;
rightCount += length;
indicesLength += length;
}
}
var addEndPositions = defined(endPositions);
var endPositionLength;
if (addEndPositions) {
endPositionLength = endPositions[0].length - 3;
leftCount += endPositionLength;
rightCount += endPositionLength;
endPositionLength /= 3;
indicesLength += endPositionLength * 6;
}
var size = leftCount + rightCount;
var finalPositions = new Float64Array(size);
var normals = (vertexFormat.normal) ? new Float32Array(size) : undefined;
var tangents = (vertexFormat.tangent) ? new Float32Array(size) : undefined;
var binormals = (vertexFormat.binormal) ? new Float32Array(size) : undefined;
var attr = {
normals : normals,
tangents : tangents,
binormals : binormals
};
var front = 0;
var back = size - 1;
var UL, LL, UR, LR;
var normal = cartesian1;
var left = cartesian2;
var rightPos, leftPos;
var halfLength = endPositionLength / 2;
var indices = IndexDatatype.createTypedArray(size / 3, indicesLength);
var index = 0;
if (addEndPositions) { // add rounded end
leftPos = cartesian3;
rightPos = cartesian4;
var firstEndPositions = endPositions[0];
normal = Cartesian3.fromArray(computedNormals, 0, normal);
left = Cartesian3.fromArray(computedLefts, 0, left);
for (i = 0; i < halfLength; i++) {
leftPos = Cartesian3.fromArray(firstEndPositions, (halfLength - 1 - i) * 3, leftPos);
rightPos = Cartesian3.fromArray(firstEndPositions, (halfLength + i) * 3, rightPos);
CorridorGeometryLibrary.addAttribute(finalPositions, rightPos, front);
CorridorGeometryLibrary.addAttribute(finalPositions, leftPos, undefined, back);
addNormals(attr, normal, left, front, back, vertexFormat);
LL = front / 3;
LR = LL + 1;
UL = (back - 2) / 3;
UR = UL - 1;
indices[index++] = UL;
indices[index++] = LL;
indices[index++] = UR;
indices[index++] = UR;
indices[index++] = LL;
indices[index++] = LR;
front += 3;
back -= 3;
}
}
var posIndex = 0;
var compIndex = 0;
var rightEdge = positions[posIndex++]; //add first two edges
var leftEdge = positions[posIndex++];
finalPositions.set(rightEdge, front);
finalPositions.set(leftEdge, back - leftEdge.length + 1);
left = Cartesian3.fromArray(computedLefts, compIndex, left);
var rightNormal;
var leftNormal;
length = leftEdge.length - 3;
for (i = 0; i < length; i += 3) {
rightNormal = ellipsoid.geodeticSurfaceNormal(Cartesian3.fromArray(rightEdge, i, scratch1), scratch1);
leftNormal = ellipsoid.geodeticSurfaceNormal(Cartesian3.fromArray(leftEdge, length - i, scratch2), scratch2);
normal = Cartesian3.normalize(Cartesian3.add(rightNormal, leftNormal, normal), normal);
addNormals(attr, normal, left, front, back, vertexFormat);
LL = front / 3;
LR = LL + 1;
UL = (back - 2) / 3;
UR = UL - 1;
indices[index++] = UL;
indices[index++] = LL;
indices[index++] = UR;
indices[index++] = UR;
indices[index++] = LL;
indices[index++] = LR;
front += 3;
back -= 3;
}
rightNormal = ellipsoid.geodeticSurfaceNormal(Cartesian3.fromArray(rightEdge, length, scratch1), scratch1);
leftNormal = ellipsoid.geodeticSurfaceNormal(Cartesian3.fromArray(leftEdge, length, scratch2), scratch2);
normal = Cartesian3.normalize(Cartesian3.add(rightNormal, leftNormal, normal), normal);
compIndex += 3;
for (i = 0; i < corners.length; i++) {
var j;
corner = corners[i];
var l = corner.leftPositions;
var r = corner.rightPositions;
var pivot;
var start;
var outsidePoint = cartesian6;
var previousPoint = cartesian3;
var nextPoint = cartesian4;
normal = Cartesian3.fromArray(computedNormals, compIndex, normal);
if (defined(l)) {
addNormals(attr, normal, left, undefined, back, vertexFormat);
back -= 3;
pivot = LR;
start = UR;
for (j = 0; j < l.length / 3; j++) {
outsidePoint = Cartesian3.fromArray(l, j * 3, outsidePoint);
indices[index++] = pivot;
indices[index++] = start - j - 1;
indices[index++] = start - j;
CorridorGeometryLibrary.addAttribute(finalPositions, outsidePoint, undefined, back);
previousPoint = Cartesian3.fromArray(finalPositions, (start - j - 1) * 3, previousPoint);
nextPoint = Cartesian3.fromArray(finalPositions, pivot * 3, nextPoint);
left = Cartesian3.normalize(Cartesian3.subtract(previousPoint, nextPoint, left), left);
addNormals(attr, normal, left, undefined, back, vertexFormat);
back -= 3;
}
outsidePoint = Cartesian3.fromArray(finalPositions, pivot * 3, outsidePoint);
previousPoint = Cartesian3.subtract(Cartesian3.fromArray(finalPositions, (start) * 3, previousPoint), outsidePoint, previousPoint);
nextPoint = Cartesian3.subtract(Cartesian3.fromArray(finalPositions, (start - j) * 3, nextPoint), outsidePoint, nextPoint);
left = Cartesian3.normalize(Cartesian3.add(previousPoint, nextPoint, left), left);
addNormals(attr, normal, left, front, undefined, vertexFormat);
front += 3;
} else {
addNormals(attr, normal, left, front, undefined, vertexFormat);
front += 3;
pivot = UR;
start = LR;
for (j = 0; j < r.length / 3; j++) {
outsidePoint = Cartesian3.fromArray(r, j * 3, outsidePoint);
indices[index++] = pivot;
indices[index++] = start + j;
indices[index++] = start + j + 1;
CorridorGeometryLibrary.addAttribute(finalPositions, outsidePoint, front);
previousPoint = Cartesian3.fromArray(finalPositions, pivot * 3, previousPoint);
nextPoint = Cartesian3.fromArray(finalPositions, (start + j) * 3, nextPoint);
left = Cartesian3.normalize(Cartesian3.subtract(previousPoint, nextPoint, left), left);
addNormals(attr, normal, left, front, undefined, vertexFormat);
front += 3;
}
outsidePoint = Cartesian3.fromArray(finalPositions, pivot * 3, outsidePoint);
previousPoint = Cartesian3.subtract(Cartesian3.fromArray(finalPositions, (start + j) * 3, previousPoint), outsidePoint, previousPoint);
nextPoint = Cartesian3.subtract(Cartesian3.fromArray(finalPositions, start * 3, nextPoint), outsidePoint, nextPoint);
left = Cartesian3.normalize(Cartesian3.negate(Cartesian3.add(nextPoint, previousPoint, left), left), left);
addNormals(attr, normal, left, undefined, back, vertexFormat);
back -= 3;
}
rightEdge = positions[posIndex++];
leftEdge = positions[posIndex++];
rightEdge.splice(0, 3); //remove duplicate points added by corner
leftEdge.splice(leftEdge.length - 3, 3);
finalPositions.set(rightEdge, front);
finalPositions.set(leftEdge, back - leftEdge.length + 1);
length = leftEdge.length - 3;
compIndex += 3;
left = Cartesian3.fromArray(computedLefts, compIndex, left);
for (j = 0; j < leftEdge.length; j += 3) {
rightNormal = ellipsoid.geodeticSurfaceNormal(Cartesian3.fromArray(rightEdge, j, scratch1), scratch1);
leftNormal = ellipsoid.geodeticSurfaceNormal(Cartesian3.fromArray(leftEdge, length - j, scratch2), scratch2);
normal = Cartesian3.normalize(Cartesian3.add(rightNormal, leftNormal, normal), normal);
addNormals(attr, normal, left, front, back, vertexFormat);
LR = front / 3;
LL = LR - 1;
UR = (back - 2) / 3;
UL = UR + 1;
indices[index++] = UL;
indices[index++] = LL;
indices[index++] = UR;
indices[index++] = UR;
indices[index++] = LL;
indices[index++] = LR;
front += 3;
back -= 3;
}
front -= 3;
back += 3;
}
normal = Cartesian3.fromArray(computedNormals, computedNormals.length - 3, normal);
addNormals(attr, normal, left, front, back, vertexFormat);
if (addEndPositions) { // add rounded end
front += 3;
back -= 3;
leftPos = cartesian3;
rightPos = cartesian4;
var lastEndPositions = endPositions[1];
for (i = 0; i < halfLength; i++) {
leftPos = Cartesian3.fromArray(lastEndPositions, (endPositionLength - i - 1) * 3, leftPos);
rightPos = Cartesian3.fromArray(lastEndPositions, i * 3, rightPos);
CorridorGeometryLibrary.addAttribute(finalPositions, leftPos, undefined, back);
CorridorGeometryLibrary.addAttribute(finalPositions, rightPos, front);
addNormals(attr, normal, left, front, back, vertexFormat);
LR = front / 3;
LL = LR - 1;
UR = (back - 2) / 3;
UL = UR + 1;
indices[index++] = UL;
indices[index++] = LL;
indices[index++] = UR;
indices[index++] = UR;
indices[index++] = LL;
indices[index++] = LR;
front += 3;
back -= 3;
}
}
attributes.position = new GeometryAttribute({
componentDatatype : ComponentDatatype.DOUBLE,
componentsPerAttribute : 3,
values : finalPositions
});
if (vertexFormat.st) {
var st = new Float32Array(size / 3 * 2);
var rightSt;
var leftSt;
var stIndex = 0;
if (addEndPositions) {
leftCount /= 3;
rightCount /= 3;
var theta = Math.PI / (endPositionLength + 1);
leftSt = 1 / (leftCount - endPositionLength + 1);
rightSt = 1 / (rightCount - endPositionLength + 1);
var a;
var halfEndPos = endPositionLength / 2;
for (i = halfEndPos + 1; i < endPositionLength + 1; i++) { // lower left rounded end
a = CesiumMath.PI_OVER_TWO + theta * i;
st[stIndex++] = rightSt * (1 + Math.cos(a));
st[stIndex++] = 0.5 * (1 + Math.sin(a));
}
for (i = 1; i < rightCount - endPositionLength + 1; i++) { // bottom edge
st[stIndex++] = i * rightSt;
st[stIndex++] = 0;
}
for (i = endPositionLength; i > halfEndPos; i--) { // lower right rounded end
a = CesiumMath.PI_OVER_TWO - i * theta;
st[stIndex++] = 1 - rightSt * (1 + Math.cos(a));
st[stIndex++] = 0.5 * (1 + Math.sin(a));
}
for (i = halfEndPos; i > 0; i--) { // upper right rounded end
a = CesiumMath.PI_OVER_TWO - theta * i;
st[stIndex++] = 1 - leftSt * (1 + Math.cos(a));
st[stIndex++] = 0.5 * (1 + Math.sin(a));
}
for (i = leftCount - endPositionLength; i > 0; i--) { // top edge
st[stIndex++] = i * leftSt;
st[stIndex++] = 1;
}
for (i = 1; i < halfEndPos + 1; i++) { // upper left rounded end
a = CesiumMath.PI_OVER_TWO + theta * i;
st[stIndex++] = leftSt * (1 + Math.cos(a));
st[stIndex++] = 0.5 * (1 + Math.sin(a));
}
} else {
leftCount /= 3;
rightCount /= 3;
leftSt = 1 / (leftCount - 1);
rightSt = 1 / (rightCount - 1);
for (i = 0; i < rightCount; i++) { // bottom edge
st[stIndex++] = i * rightSt;
st[stIndex++] = 0;
}
for (i = leftCount; i > 0; i--) { // top edge
st[stIndex++] = (i - 1) * leftSt;
st[stIndex++] = 1;
}
}
attributes.st = new GeometryAttribute({
componentDatatype : ComponentDatatype.FLOAT,
componentsPerAttribute : 2,
values : st
});
}
if (vertexFormat.normal) {
attributes.normal = new GeometryAttribute({
componentDatatype : ComponentDatatype.FLOAT,
componentsPerAttribute : 3,
values : attr.normals
});
}
if (vertexFormat.tangent) {
attributes.tangent = new GeometryAttribute({
componentDatatype : ComponentDatatype.FLOAT,
componentsPerAttribute : 3,
values : attr.tangents
});
}
if (vertexFormat.binormal) {
attributes.binormal = new GeometryAttribute({
componentDatatype : ComponentDatatype.FLOAT,
componentsPerAttribute : 3,
values : attr.binormals
});
}
return {
attributes : attributes,
indices : indices
};
}
function extrudedAttributes(attributes, vertexFormat) {
if (!vertexFormat.normal && !vertexFormat.binormal && !vertexFormat.tangent && !vertexFormat.st) {
return attributes;
}
var positions = attributes.position.values;
var topNormals;
var topBinormals;
if (vertexFormat.normal || vertexFormat.binormal) {
topNormals = attributes.normal.values;
topBinormals = attributes.binormal.values;
}
var size = attributes.position.values.length / 18;
var threeSize = size * 3;
var twoSize = size * 2;
var sixSize = threeSize * 2;
var i;
if (vertexFormat.normal || vertexFormat.binormal || vertexFormat.tangent) {
var normals = (vertexFormat.normal) ? new Float32Array(threeSize * 6) : undefined;
var binormals = (vertexFormat.binormal) ? new Float32Array(threeSize * 6) : undefined;
var tangents = (vertexFormat.tangent) ? new Float32Array(threeSize * 6) : undefined;
var topPosition = cartesian1;
var bottomPosition = cartesian2;
var previousPosition = cartesian3;
var normal = cartesian4;
var tangent = cartesian5;
var binormal = cartesian6;
var attrIndex = sixSize;
for (i = 0; i < threeSize; i += 3) {
var attrIndexOffset = attrIndex + sixSize;
topPosition = Cartesian3.fromArray(positions, i, topPosition);
bottomPosition = Cartesian3.fromArray(positions, i + threeSize, bottomPosition);
previousPosition = Cartesian3.fromArray(positions, (i + 3) % threeSize, previousPosition);
bottomPosition = Cartesian3.subtract(bottomPosition, topPosition, bottomPosition);
previousPosition = Cartesian3.subtract(previousPosition, topPosition, previousPosition);
normal = Cartesian3.normalize(Cartesian3.cross(bottomPosition, previousPosition, normal), normal);
if (vertexFormat.normal) {
CorridorGeometryLibrary.addAttribute(normals, normal, attrIndexOffset);
CorridorGeometryLibrary.addAttribute(normals, normal, attrIndexOffset + 3);
CorridorGeometryLibrary.addAttribute(normals, normal, attrIndex);
CorridorGeometryLibrary.addAttribute(normals, normal, attrIndex + 3);
}
if (vertexFormat.tangent || vertexFormat.binormal) {
binormal = Cartesian3.fromArray(topNormals, i, binormal);
if (vertexFormat.binormal) {
CorridorGeometryLibrary.addAttribute(binormals, binormal, attrIndexOffset);
CorridorGeometryLibrary.addAttribute(binormals, binormal, attrIndexOffset + 3);
CorridorGeometryLibrary.addAttribute(binormals, binormal, attrIndex);
CorridorGeometryLibrary.addAttribute(binormals, binormal, attrIndex + 3);
}
if (vertexFormat.tangent) {
tangent = Cartesian3.normalize(Cartesian3.cross(binormal, normal, tangent), tangent);
CorridorGeometryLibrary.addAttribute(tangents, tangent, attrIndexOffset);
CorridorGeometryLibrary.addAttribute(tangents, tangent, attrIndexOffset + 3);
CorridorGeometryLibrary.addAttribute(tangents, tangent, attrIndex);
CorridorGeometryLibrary.addAttribute(tangents, tangent, attrIndex + 3);
}
}
attrIndex += 6;
}
if (vertexFormat.normal) {
normals.set(topNormals); //top
for (i = 0; i < threeSize; i += 3) { //bottom normals
normals[i + threeSize] = -topNormals[i];
normals[i + threeSize + 1] = -topNormals[i + 1];
normals[i + threeSize + 2] = -topNormals[i + 2];
}
attributes.normal.values = normals;
} else {
attributes.normal = undefined;
}
if (vertexFormat.binormal) {
binormals.set(topBinormals); //top
binormals.set(topBinormals, threeSize); //bottom
attributes.binormal.values = binormals;
} else {
attributes.binormal = undefined;
}
if (vertexFormat.tangent) {
var topTangents = attributes.tangent.values;
tangents.set(topTangents); //top
tangents.set(topTangents, threeSize); //bottom
attributes.tangent.values = tangents;
}
}
if (vertexFormat.st) {
var topSt = attributes.st.values;
var st = new Float32Array(twoSize * 6);
st.set(topSt); //top
st.set(topSt, twoSize); //bottom
var index = twoSize * 2;
for ( var j = 0; j < 2; j++) {
st[index++] = topSt[0];
st[index++] = topSt[1];
for (i = 2; i < twoSize; i += 2) {
var s = topSt[i];
var t = topSt[i + 1];
st[index++] = s;
st[index++] = t;
st[index++] = s;
st[index++] = t;
}
st[index++] = topSt[0];
st[index++] = topSt[1];
}
attributes.st.values = st;
}
return attributes;
}
function addWallPositions(positions, index, wallPositions) {
wallPositions[index++] = positions[0];
wallPositions[index++] = positions[1];
wallPositions[index++] = positions[2];
for ( var i = 3; i < positions.length; i += 3) {
var x = positions[i];
var y = positions[i + 1];
var z = positions[i + 2];
wallPositions[index++] = x;
wallPositions[index++] = y;
wallPositions[index++] = z;
wallPositions[index++] = x;
wallPositions[index++] = y;
wallPositions[index++] = z;
}
wallPositions[index++] = positions[0];
wallPositions[index++] = positions[1];
wallPositions[index++] = positions[2];
return wallPositions;
}
function computePositionsExtruded(params, vertexFormat) {
var topVertexFormat = new VertexFormat({
position : vertexFormat.positon,
normal : (vertexFormat.normal || vertexFormat.binormal),
tangent : vertexFormat.tangent,
binormal : (vertexFormat.normal || vertexFormat.binormal),
st : vertexFormat.st
});
var ellipsoid = params.ellipsoid;
var computedPositions = CorridorGeometryLibrary.computePositions(params);
var attr = combine(computedPositions, topVertexFormat, ellipsoid);
var height = params.height;
var extrudedHeight = params.extrudedHeight;
var attributes = attr.attributes;
var indices = attr.indices;
var positions = attributes.position.values;
var length = positions.length;
var newPositions = new Float64Array(length * 6);
var extrudedPositions = new Float64Array(length);
extrudedPositions.set(positions);
var wallPositions = new Float64Array(length * 4);
positions = PolygonPipeline.scaleToGeodeticHeight(positions, height, ellipsoid);
wallPositions = addWallPositions(positions, 0, wallPositions);
extrudedPositions = PolygonPipeline.scaleToGeodeticHeight(extrudedPositions, extrudedHeight, ellipsoid);
wallPositions = addWallPositions(extrudedPositions, length * 2, wallPositions);
newPositions.set(positions);
newPositions.set(extrudedPositions, length);
newPositions.set(wallPositions, length * 2);
attributes.position.values = newPositions;
length /= 3;
var i;
var iLength = indices.length;
var twoLength = length + length;
var newIndices = IndexDatatype.createTypedArray(newPositions.length / 3, iLength * 2 + twoLength * 3);
newIndices.set(indices);
var index = iLength;
for (i = 0; i < iLength; i += 3) { // bottom indices
var v0 = indices[i];
var v1 = indices[i + 1];
var v2 = indices[i + 2];
newIndices[index++] = v2 + length;
newIndices[index++] = v1 + length;
newIndices[index++] = v0 + length;
}
attributes = extrudedAttributes(attributes, vertexFormat);
var UL, LL, UR, LR;
for (i = 0; i < twoLength; i += 2) { //wall indices
UL = i + twoLength;
LL = UL + twoLength;
UR = UL + 1;
LR = LL + 1;
newIndices[index++] = UL;
newIndices[index++] = LL;
newIndices[index++] = UR;
newIndices[index++] = UR;
newIndices[index++] = LL;
newIndices[index++] = LR;
}
return {
attributes : attributes,
indices : newIndices
};
}
var scratchCartesian1 = new Cartesian3();
var scratchCartesian2 = new Cartesian3();
var scratchCartographic = new Cartographic();
function computeOffsetPoints(position1, position2, ellipsoid, halfWidth, min, max) {
// Compute direction of offset the point
var direction = Cartesian3.subtract(position2, position1, scratchCartesian1);
Cartesian3.normalize(direction, direction);
var normal = ellipsoid.geodeticSurfaceNormal(position1, scratchCartesian2);
var offsetDirection = Cartesian3.cross(direction, normal, scratchCartesian1);
Cartesian3.multiplyByScalar(offsetDirection, halfWidth, offsetDirection);
var minLat = min.latitude;
var minLon = min.longitude;
var maxLat = max.latitude;
var maxLon = max.longitude;
// Compute 2 offset points
Cartesian3.add(position1, offsetDirection, scratchCartesian2);
ellipsoid.cartesianToCartographic(scratchCartesian2, scratchCartographic);
var lat = scratchCartographic.latitude;
var lon = scratchCartographic.longitude;
minLat = Math.min(minLat, lat);
minLon = Math.min(minLon, lon);
maxLat = Math.max(maxLat, lat);
maxLon = Math.max(maxLon, lon);
Cartesian3.subtract(position1, offsetDirection, scratchCartesian2);
ellipsoid.cartesianToCartographic(scratchCartesian2, scratchCartographic);
lat = scratchCartographic.latitude;
lon = scratchCartographic.longitude;
minLat = Math.min(minLat, lat);
minLon = Math.min(minLon, lon);
maxLat = Math.max(maxLat, lat);
maxLon = Math.max(maxLon, lon);
min.latitude = minLat;
min.longitude = minLon;
max.latitude = maxLat;
max.longitude = maxLon;
}
var scratchCartesianOffset = new Cartesian3();
var scratchCartesianEnds = new Cartesian3();
var scratchCartographicMin = new Cartographic();
var scratchCartographicMax = new Cartographic();
function computeRectangle(positions, ellipsoid, width, cornerType) {
var cleanPositions = arrayRemoveDuplicates(positions, Cartesian3.equalsEpsilon);
var length = cleanPositions.length - 1;
if (length === 0 || width === 0) {
return new Rectangle();
}
var halfWidth = width * 0.5;
scratchCartographicMin.latitude = Number.POSITIVE_INFINITY;
scratchCartographicMin.longitude = Number.POSITIVE_INFINITY;
scratchCartographicMax.latitude = Number.NEGATIVE_INFINITY;
scratchCartographicMax.longitude = Number.NEGATIVE_INFINITY;
var lat, lon;
if (cornerType === CornerType.ROUNDED) {
// Compute start cap
var first = cleanPositions[0];
Cartesian3.subtract(first, cleanPositions[1], scratchCartesianOffset);
Cartesian3.normalize(scratchCartesianOffset, scratchCartesianOffset);
Cartesian3.multiplyByScalar(scratchCartesianOffset, halfWidth, scratchCartesianOffset);
Cartesian3.add(first, scratchCartesianOffset, scratchCartesianEnds);
ellipsoid.cartesianToCartographic(scratchCartesianEnds, scratchCartographic);
lat = scratchCartographic.latitude;
lon = scratchCartographic.longitude;
scratchCartographicMin.latitude = Math.min(scratchCartographicMin.latitude, lat);
scratchCartographicMin.longitude = Math.min(scratchCartographicMin.longitude, lon);
scratchCartographicMax.latitude = Math.max(scratchCartographicMax.latitude, lat);
scratchCartographicMax.longitude = Math.max(scratchCartographicMax.longitude, lon);
}
// Compute the rest
for (var i = 0; i < length; ++i) {
computeOffsetPoints(cleanPositions[i], cleanPositions[i+1], ellipsoid, halfWidth,
scratchCartographicMin, scratchCartographicMax);
}
// Compute ending point
var last = cleanPositions[length];
Cartesian3.subtract(last, cleanPositions[length-1], scratchCartesianOffset);
Cartesian3.normalize(scratchCartesianOffset, scratchCartesianOffset);
Cartesian3.multiplyByScalar(scratchCartesianOffset, halfWidth, scratchCartesianOffset);
Cartesian3.add(last, scratchCartesianOffset, scratchCartesianEnds);
computeOffsetPoints(last, scratchCartesianEnds, ellipsoid, halfWidth,
scratchCartographicMin, scratchCartographicMax);
if (cornerType === CornerType.ROUNDED) {
// Compute end cap
ellipsoid.cartesianToCartographic(scratchCartesianEnds, scratchCartographic);
lat = scratchCartographic.latitude;
lon = scratchCartographic.longitude;
scratchCartographicMin.latitude = Math.min(scratchCartographicMin.latitude, lat);
scratchCartographicMin.longitude = Math.min(scratchCartographicMin.longitude, lon);
scratchCartographicMax.latitude = Math.max(scratchCartographicMax.latitude, lat);
scratchCartographicMax.longitude = Math.max(scratchCartographicMax.longitude, lon);
}
var rectangle = new Rectangle();
rectangle.north = scratchCartographicMax.latitude;
rectangle.south = scratchCartographicMin.latitude;
rectangle.east = scratchCartographicMax.longitude;
rectangle.west = scratchCartographicMin.longitude;
return rectangle;
}
/**
* A description of a corridor. Corridor geometry can be rendered with both {@link Primitive} and {@link GroundPrimitive}.
*
* @alias CorridorGeometry
* @constructor
*
* @param {Object} options Object with the following properties:
* @param {Cartesian3[]} options.positions An array of positions that define the center of the corridor.
* @param {Number} options.width The distance between the edges of the corridor in meters.
* @param {Ellipsoid} [options.ellipsoid=Ellipsoid.WGS84] The ellipsoid to be used as a reference.
* @param {Number} [options.granularity=CesiumMath.RADIANS_PER_DEGREE] The distance, in radians, between each latitude and longitude. Determines the number of positions in the buffer.
* @param {Number} [options.height=0] The distance in meters between the ellipsoid surface and the positions.
* @param {Number} [options.extrudedHeight] The distance in meters between the ellipsoid surface and the extruded face.
* @param {VertexFormat} [options.vertexFormat=VertexFormat.DEFAULT] The vertex attributes to be computed.
* @param {CornerType} [options.cornerType=CornerType.ROUNDED] Determines the style of the corners.
*
* @see CorridorGeometry.createGeometry
* @see Packable
*
* @demo {@link http://cesiumjs.org/Cesium/Apps/Sandcastle/index.html?src=Corridor.html|Cesium Sandcastle Corridor Demo}
*
* @example
* var corridor = new Cesium.CorridorGeometry({
* vertexFormat : Cesium.VertexFormat.POSITION_ONLY,
* positions : Cesium.Cartesian3.fromDegreesArray([-72.0, 40.0, -70.0, 35.0]),
* width : 100000
* });
*/
function CorridorGeometry(options) {
options = defaultValue(options, defaultValue.EMPTY_OBJECT);
var positions = options.positions;
var width = options.width;
//>>includeStart('debug', pragmas.debug);
if (!defined(positions)) {
throw new DeveloperError('options.positions is required.');
}
if (!defined(width)) {
throw new DeveloperError('options.width is required.');
}
//>>includeEnd('debug');
this._positions = positions;
this._ellipsoid = Ellipsoid.clone(defaultValue(options.ellipsoid, Ellipsoid.WGS84));
this._vertexFormat = VertexFormat.clone(defaultValue(options.vertexFormat, VertexFormat.DEFAULT));
this._width = width;
this._height = defaultValue(options.height, 0);
this._extrudedHeight = defaultValue(options.extrudedHeight, this._height);
this._cornerType = defaultValue(options.cornerType, CornerType.ROUNDED);
this._granularity = defaultValue(options.granularity, CesiumMath.RADIANS_PER_DEGREE);
this._workerName = 'createCorridorGeometry';
this._rectangle = computeRectangle(positions, this._ellipsoid, width, this._cornerType);
/**
* The number of elements used to pack the object into an array.
* @type {Number}
*/
this.packedLength = 1 + positions.length * Cartesian3.packedLength + Ellipsoid.packedLength + VertexFormat.packedLength + Rectangle.packedLength + 5;
}
/**
* Stores the provided instance into the provided array.
*
* @param {CorridorGeometry} value The value to pack.
* @param {Number[]} array The array to pack into.
* @param {Number} [startingIndex=0] The index into the array at which to start packing the elements.
*
* @returns {Number[]} The array that was packed into
*/
CorridorGeometry.pack = function(value, array, startingIndex) {
//>>includeStart('debug', pragmas.debug);
if (!defined(value)) {
throw new DeveloperError('value is required');
}
if (!defined(array)) {
throw new DeveloperError('array is required');
}
//>>includeEnd('debug');
startingIndex = defaultValue(startingIndex, 0);
var positions = value._positions;
var length = positions.length;
array[startingIndex++] = length;
for (var i = 0; i < length; ++i, startingIndex += Cartesian3.packedLength) {
Cartesian3.pack(positions[i], array, startingIndex);
}
Ellipsoid.pack(value._ellipsoid, array, startingIndex);
startingIndex += Ellipsoid.packedLength;
VertexFormat.pack(value._vertexFormat, array, startingIndex);
startingIndex += VertexFormat.packedLength;
Rectangle.pack(value._rectangle, array, startingIndex);
startingIndex += Rectangle.packedLength;
array[startingIndex++] = value._width;
array[startingIndex++] = value._height;
array[startingIndex++] = value._extrudedHeight;
array[startingIndex++] = value._cornerType;
array[startingIndex] = value._granularity;
return array;
};
var scratchEllipsoid = Ellipsoid.clone(Ellipsoid.UNIT_SPHERE);
var scratchVertexFormat = new VertexFormat();
var scratchRectangle = new Rectangle();
var scratchOptions = {
positions : undefined,
ellipsoid : scratchEllipsoid,
vertexFormat : scratchVertexFormat,
width : undefined,
height : undefined,
extrudedHeight : undefined,
cornerType : undefined,
granularity : undefined
};
/**
* Retrieves an instance from a packed array.
*
* @param {Number[]} array The packed array.
* @param {Number} [startingIndex=0] The starting index of the element to be unpacked.
* @param {CorridorGeometry} [result] The object into which to store the result.
* @returns {CorridorGeometry} The modified result parameter or a new CorridorGeometry instance if one was not provided.
*/
CorridorGeometry.unpack = function(array, startingIndex, result) {
//>>includeStart('debug', pragmas.debug);
if (!defined(array)) {
throw new DeveloperError('array is required');
}
//>>includeEnd('debug');
startingIndex = defaultValue(startingIndex, 0);
var length = array[startingIndex++];
var positions = new Array(length);
for (var i = 0; i < length; ++i, startingIndex += Cartesian3.packedLength) {
positions[i] = Cartesian3.unpack(array, startingIndex);
}
var ellipsoid = Ellipsoid.unpack(array, startingIndex, scratchEllipsoid);
startingIndex += Ellipsoid.packedLength;
var vertexFormat = VertexFormat.unpack(array, startingIndex, scratchVertexFormat);
startingIndex += VertexFormat.packedLength;
var rectangle = Rectangle.unpack(array, startingIndex, scratchRectangle);
startingIndex += Rectangle.packedLength;
var width = array[startingIndex++];
var height = array[startingIndex++];
var extrudedHeight = array[startingIndex++];
var cornerType = array[startingIndex++];
var granularity = array[startingIndex];
if (!defined(result)) {
scratchOptions.positions = positions;
scratchOptions.width = width;
scratchOptions.height = height;
scratchOptions.extrudedHeight = extrudedHeight;
scratchOptions.cornerType = cornerType;
scratchOptions.granularity = granularity;
return new CorridorGeometry(scratchOptions);
}
result._positions = positions;
result._ellipsoid = Ellipsoid.clone(ellipsoid, result._ellipsoid);
result._vertexFormat = VertexFormat.clone(vertexFormat, result._vertexFormat);
result._width = width;
result._height = height;
result._extrudedHeight = extrudedHeight;
result._cornerType = cornerType;
result._granularity = granularity;
result._rectangle = Rectangle.clone(rectangle);
return result;
};
/**
* Computes the geometric representation of a corridor, including its vertices, indices, and a bounding sphere.
*
* @param {CorridorGeometry} corridorGeometry A description of the corridor.
* @returns {Geometry|undefined} The computed vertices and indices.
*/
CorridorGeometry.createGeometry = function(corridorGeometry) {
var positions = corridorGeometry._positions;
var height = corridorGeometry._height;
var width = corridorGeometry._width;
var extrudedHeight = corridorGeometry._extrudedHeight;
var extrude = (height !== extrudedHeight);
var cleanPositions = arrayRemoveDuplicates(positions, Cartesian3.equalsEpsilon);
if ((cleanPositions.length < 2) || (width <= 0)) {
return;
}
var ellipsoid = corridorGeometry._ellipsoid;
var vertexFormat = corridorGeometry._vertexFormat;
var params = {
ellipsoid : ellipsoid,
positions : cleanPositions,
width : width,
cornerType : corridorGeometry._cornerType,
granularity : corridorGeometry._granularity,
saveAttributes: true
};
var attr;
if (extrude) {
var h = Math.max(height, extrudedHeight);
extrudedHeight = Math.min(height, extrudedHeight);
height = h;
params.height = height;
params.extrudedHeight = extrudedHeight;
attr = computePositionsExtruded(params, vertexFormat);
} else {
var computedPositions = CorridorGeometryLibrary.computePositions(params);
attr = combine(computedPositions, vertexFormat, ellipsoid);
attr.attributes.position.values = PolygonPipeline.scaleToGeodeticHeight(attr.attributes.position.values, height, ellipsoid);
}
var attributes = attr.attributes;
var boundingSphere = BoundingSphere.fromVertices(attributes.position.values, undefined, 3);
if (!vertexFormat.position) {
attr.attributes.position.values = undefined;
}
return new Geometry({
attributes : attributes,
indices : attr.indices,
primitiveType : PrimitiveType.TRIANGLES,
boundingSphere : boundingSphere
});
};
/**
* @private
*/
CorridorGeometry.createShadowVolume = function(corridorGeometry, minHeightFunc, maxHeightFunc) {
var granularity = corridorGeometry._granularity;
var ellipsoid = corridorGeometry._ellipsoid;
var minHeight = minHeightFunc(granularity, ellipsoid);
var maxHeight = maxHeightFunc(granularity, ellipsoid);
return new CorridorGeometry({
positions : corridorGeometry._positions,
width : corridorGeometry._width,
cornerType : corridorGeometry._cornerType,
ellipsoid : ellipsoid,
granularity : granularity,
extrudedHeight : minHeight,
height : maxHeight,
vertexFormat : VertexFormat.POSITION_ONLY
});
};
defineProperties(CorridorGeometry.prototype, {
/**
* @private
*/
rectangle : {
get : function() {
return this._rectangle;
}
}
});
return CorridorGeometry;
});