/*global define*/
define([
'./BoundingSphere',
'./Cartesian2',
'./Cartesian3',
'./Cartographic',
'./ComponentDatatype',
'./defaultValue',
'./defined',
'./defineProperties',
'./DeveloperError',
'./EllipseGeometryLibrary',
'./Ellipsoid',
'./GeographicProjection',
'./Geometry',
'./GeometryAttribute',
'./GeometryAttributes',
'./GeometryInstance',
'./GeometryPipeline',
'./IndexDatatype',
'./Math',
'./Matrix3',
'./Matrix4',
'./PrimitiveType',
'./Quaternion',
'./Rectangle',
'./Transforms',
'./VertexFormat'
], function(
BoundingSphere,
Cartesian2,
Cartesian3,
Cartographic,
ComponentDatatype,
defaultValue,
defined,
defineProperties,
DeveloperError,
EllipseGeometryLibrary,
Ellipsoid,
GeographicProjection,
Geometry,
GeometryAttribute,
GeometryAttributes,
GeometryInstance,
GeometryPipeline,
IndexDatatype,
CesiumMath,
Matrix3,
Matrix4,
PrimitiveType,
Quaternion,
Rectangle,
Transforms,
VertexFormat) {
'use strict';
var scratchCartesian1 = new Cartesian3();
var scratchCartesian2 = new Cartesian3();
var scratchCartesian3 = new Cartesian3();
var scratchCartesian4 = new Cartesian3();
var texCoordScratch = new Cartesian2();
var textureMatrixScratch = new Matrix3();
var quaternionScratch = new Quaternion();
var scratchNormal = new Cartesian3();
var scratchTangent = new Cartesian3();
var scratchBinormal = new Cartesian3();
var scratchCartographic = new Cartographic();
var projectedCenterScratch = new Cartesian3();
var scratchMinTexCoord = new Cartesian2();
var scratchMaxTexCoord = new Cartesian2();
function computeTopBottomAttributes(positions, options, extrude) {
var vertexFormat = options.vertexFormat;
var center = options.center;
var semiMajorAxis = options.semiMajorAxis;
var semiMinorAxis = options.semiMinorAxis;
var ellipsoid = options.ellipsoid;
var stRotation = options.stRotation;
var size = (extrude) ? positions.length / 3 * 2 : positions.length / 3;
var textureCoordinates = (vertexFormat.st) ? new Float32Array(size * 2) : undefined;
var normals = (vertexFormat.normal) ? new Float32Array(size * 3) : undefined;
var tangents = (vertexFormat.tangent) ? new Float32Array(size * 3) : undefined;
var binormals = (vertexFormat.binormal) ? new Float32Array(size * 3) : undefined;
var textureCoordIndex = 0;
// Raise positions to a height above the ellipsoid and compute the
// texture coordinates, normals, tangents, and binormals.
var normal = scratchNormal;
var tangent = scratchTangent;
var binormal = scratchBinormal;
var projection = new GeographicProjection(ellipsoid);
var projectedCenter = projection.project(ellipsoid.cartesianToCartographic(center, scratchCartographic), projectedCenterScratch);
var geodeticNormal = ellipsoid.scaleToGeodeticSurface(center, scratchCartesian1);
ellipsoid.geodeticSurfaceNormal(geodeticNormal, geodeticNormal);
var rotation = Quaternion.fromAxisAngle(geodeticNormal, stRotation, quaternionScratch);
var textureMatrix = Matrix3.fromQuaternion(rotation, textureMatrixScratch);
var minTexCoord = Cartesian2.fromElements(Number.POSITIVE_INFINITY, Number.POSITIVE_INFINITY, scratchMinTexCoord);
var maxTexCoord = Cartesian2.fromElements(Number.NEGATIVE_INFINITY, Number.NEGATIVE_INFINITY, scratchMaxTexCoord);
var length = positions.length;
var bottomOffset = (extrude) ? length : 0;
var stOffset = bottomOffset / 3 * 2;
for (var i = 0; i < length; i += 3) {
var i1 = i + 1;
var i2 = i + 2;
var position = Cartesian3.fromArray(positions, i, scratchCartesian1);
if (vertexFormat.st) {
var rotatedPoint = Matrix3.multiplyByVector(textureMatrix, position, scratchCartesian2);
var projectedPoint = projection.project(ellipsoid.cartesianToCartographic(rotatedPoint, scratchCartographic), scratchCartesian3);
Cartesian3.subtract(projectedPoint, projectedCenter, projectedPoint);
texCoordScratch.x = (projectedPoint.x + semiMajorAxis) / (2.0 * semiMajorAxis);
texCoordScratch.y = (projectedPoint.y + semiMinorAxis) / (2.0 * semiMinorAxis);
minTexCoord.x = Math.min(texCoordScratch.x, minTexCoord.x);
minTexCoord.y = Math.min(texCoordScratch.y, minTexCoord.y);
maxTexCoord.x = Math.max(texCoordScratch.x, maxTexCoord.x);
maxTexCoord.y = Math.max(texCoordScratch.y, maxTexCoord.y);
if (extrude) {
textureCoordinates[textureCoordIndex + stOffset] = texCoordScratch.x;
textureCoordinates[textureCoordIndex + 1 + stOffset] = texCoordScratch.y;
}
textureCoordinates[textureCoordIndex++] = texCoordScratch.x;
textureCoordinates[textureCoordIndex++] = texCoordScratch.y;
}
normal = ellipsoid.geodeticSurfaceNormal(position, normal);
if (vertexFormat.normal || vertexFormat.tangent || vertexFormat.binormal) {
if (vertexFormat.tangent || vertexFormat.binormal) {
tangent = Cartesian3.normalize(Cartesian3.cross(Cartesian3.UNIT_Z, normal, tangent), tangent);
Matrix3.multiplyByVector(textureMatrix, tangent, tangent);
}
if (vertexFormat.normal) {
normals[i] = normal.x;
normals[i1] = normal.y;
normals[i2] = normal.z;
if (extrude) {
normals[i + bottomOffset] = -normal.x;
normals[i1 + bottomOffset] = -normal.y;
normals[i2 + bottomOffset] = -normal.z;
}
}
if (vertexFormat.tangent) {
tangents[i] = tangent.x;
tangents[i1] = tangent.y;
tangents[i2] = tangent.z;
if (extrude) {
tangents[i + bottomOffset] = -tangent.x;
tangents[i1 + bottomOffset] = -tangent.y;
tangents[i2 + bottomOffset] = -tangent.z;
}
}
if (vertexFormat.binormal) {
binormal = Cartesian3.normalize(Cartesian3.cross(normal, tangent, binormal), binormal);
binormals[i] = binormal.x;
binormals[i1] = binormal.y;
binormals[i2] = binormal.z;
if (extrude) {
binormals[i + bottomOffset] = binormal.x;
binormals[i1 + bottomOffset] = binormal.y;
binormals[i2 + bottomOffset] = binormal.z;
}
}
}
}
if (vertexFormat.st) {
length = textureCoordinates.length;
for (var k = 0; k < length; k += 2) {
textureCoordinates[k] = (textureCoordinates[k] - minTexCoord.x) / (maxTexCoord.x - minTexCoord.x);
textureCoordinates[k + 1] = (textureCoordinates[k + 1] - minTexCoord.y) / (maxTexCoord.y - minTexCoord.y);
}
}
var attributes = new GeometryAttributes();
if (vertexFormat.position) {
var finalPositions = EllipseGeometryLibrary.raisePositionsToHeight(positions, options, extrude);
attributes.position = new GeometryAttribute({
componentDatatype : ComponentDatatype.DOUBLE,
componentsPerAttribute : 3,
values : finalPositions
});
}
if (vertexFormat.st) {
attributes.st = new GeometryAttribute({
componentDatatype : ComponentDatatype.FLOAT,
componentsPerAttribute : 2,
values : textureCoordinates
});
}
if (vertexFormat.normal) {
attributes.normal = new GeometryAttribute({
componentDatatype : ComponentDatatype.FLOAT,
componentsPerAttribute : 3,
values : normals
});
}
if (vertexFormat.tangent) {
attributes.tangent = new GeometryAttribute({
componentDatatype : ComponentDatatype.FLOAT,
componentsPerAttribute : 3,
values : tangents
});
}
if (vertexFormat.binormal) {
attributes.binormal = new GeometryAttribute({
componentDatatype : ComponentDatatype.FLOAT,
componentsPerAttribute : 3,
values : binormals
});
}
return attributes;
}
function topIndices(numPts) {
// numTriangles in half = 3 + 8 + 12 + ... = -1 + 4 + (4 + 4) + (4 + 4 + 4) + ... = -1 + 4 * (1 + 2 + 3 + ...)
// = -1 + 4 * ((n * ( n + 1)) / 2)
// total triangles = 2 * numTrangles in half
// indices = total triangles * 3;
// Substitute numPts for n above
var indices = new Array(12 * (numPts * ( numPts + 1)) - 6);
var indicesIndex = 0;
var prevIndex;
var numInterior;
var positionIndex;
var i;
var j;
// Indices triangles to the 'right' of the north vector
prevIndex = 0;
positionIndex = 1;
for (i = 0; i < 3; i++) {
indices[indicesIndex++] = positionIndex++;
indices[indicesIndex++] = prevIndex;
indices[indicesIndex++] = positionIndex;
}
for (i = 2; i < numPts + 1; ++i) {
positionIndex = i * (i + 1) - 1;
prevIndex = (i - 1) * i - 1;
indices[indicesIndex++] = positionIndex++;
indices[indicesIndex++] = prevIndex;
indices[indicesIndex++] = positionIndex;
numInterior = 2 * i;
for (j = 0; j < numInterior - 1; ++j) {
indices[indicesIndex++] = positionIndex;
indices[indicesIndex++] = prevIndex++;
indices[indicesIndex++] = prevIndex;
indices[indicesIndex++] = positionIndex++;
indices[indicesIndex++] = prevIndex;
indices[indicesIndex++] = positionIndex;
}
indices[indicesIndex++] = positionIndex++;
indices[indicesIndex++] = prevIndex;
indices[indicesIndex++] = positionIndex;
}
// Indices for center column of triangles
numInterior = numPts * 2;
++positionIndex;
++prevIndex;
for (i = 0; i < numInterior - 1; ++i) {
indices[indicesIndex++] = positionIndex;
indices[indicesIndex++] = prevIndex++;
indices[indicesIndex++] = prevIndex;
indices[indicesIndex++] = positionIndex++;
indices[indicesIndex++] = prevIndex;
indices[indicesIndex++] = positionIndex;
}
indices[indicesIndex++] = positionIndex;
indices[indicesIndex++] = prevIndex++;
indices[indicesIndex++] = prevIndex;
indices[indicesIndex++] = positionIndex++;
indices[indicesIndex++] = prevIndex++;
indices[indicesIndex++] = prevIndex;
// Reverse the process creating indices to the 'left' of the north vector
++prevIndex;
for (i = numPts - 1; i > 1; --i) {
indices[indicesIndex++] = prevIndex++;
indices[indicesIndex++] = prevIndex;
indices[indicesIndex++] = positionIndex;
numInterior = 2 * i;
for (j = 0; j < numInterior - 1; ++j) {
indices[indicesIndex++] = positionIndex;
indices[indicesIndex++] = prevIndex++;
indices[indicesIndex++] = prevIndex;
indices[indicesIndex++] = positionIndex++;
indices[indicesIndex++] = prevIndex;
indices[indicesIndex++] = positionIndex;
}
indices[indicesIndex++] = prevIndex++;
indices[indicesIndex++] = prevIndex++;
indices[indicesIndex++] = positionIndex++;
}
for (i = 0; i < 3; i++) {
indices[indicesIndex++] = prevIndex++;
indices[indicesIndex++] = prevIndex;
indices[indicesIndex++] = positionIndex;
}
return indices;
}
var boundingSphereCenter = new Cartesian3();
function computeEllipse(options) {
var center = options.center;
boundingSphereCenter = Cartesian3.multiplyByScalar(options.ellipsoid.geodeticSurfaceNormal(center, boundingSphereCenter), options.height, boundingSphereCenter);
boundingSphereCenter = Cartesian3.add(center, boundingSphereCenter, boundingSphereCenter);
var boundingSphere = new BoundingSphere(boundingSphereCenter, options.semiMajorAxis);
var cep = EllipseGeometryLibrary.computeEllipsePositions(options, true, false);
var positions = cep.positions;
var numPts = cep.numPts;
var attributes = computeTopBottomAttributes(positions, options, false);
var indices = topIndices(numPts);
indices = IndexDatatype.createTypedArray(positions.length / 3, indices);
return {
boundingSphere : boundingSphere,
attributes : attributes,
indices : indices
};
}
function computeWallAttributes(positions, options) {
var vertexFormat = options.vertexFormat;
var center = options.center;
var semiMajorAxis = options.semiMajorAxis;
var semiMinorAxis = options.semiMinorAxis;
var ellipsoid = options.ellipsoid;
var height = options.height;
var extrudedHeight = options.extrudedHeight;
var stRotation = options.stRotation;
var size = positions.length / 3 * 2;
var finalPositions = new Float64Array(size * 3);
var textureCoordinates = (vertexFormat.st) ? new Float32Array(size * 2) : undefined;
var normals = (vertexFormat.normal) ? new Float32Array(size * 3) : undefined;
var tangents = (vertexFormat.tangent) ? new Float32Array(size * 3) : undefined;
var binormals = (vertexFormat.binormal) ? new Float32Array(size * 3) : undefined;
var textureCoordIndex = 0;
// Raise positions to a height above the ellipsoid and compute the
// texture coordinates, normals, tangents, and binormals.
var normal = scratchNormal;
var tangent = scratchTangent;
var binormal = scratchBinormal;
var projection = new GeographicProjection(ellipsoid);
var projectedCenter = projection.project(ellipsoid.cartesianToCartographic(center, scratchCartographic), projectedCenterScratch);
var geodeticNormal = ellipsoid.scaleToGeodeticSurface(center, scratchCartesian1);
ellipsoid.geodeticSurfaceNormal(geodeticNormal, geodeticNormal);
var rotation = Quaternion.fromAxisAngle(geodeticNormal, stRotation, quaternionScratch);
var textureMatrix = Matrix3.fromQuaternion(rotation, textureMatrixScratch);
var minTexCoord = Cartesian2.fromElements(Number.POSITIVE_INFINITY, Number.POSITIVE_INFINITY, scratchMinTexCoord);
var maxTexCoord = Cartesian2.fromElements(Number.NEGATIVE_INFINITY, Number.NEGATIVE_INFINITY, scratchMaxTexCoord);
var length = positions.length;
var stOffset = length / 3 * 2;
for (var i = 0; i < length; i += 3) {
var i1 = i + 1;
var i2 = i + 2;
var position = Cartesian3.fromArray(positions, i, scratchCartesian1);
var extrudedPosition;
if (vertexFormat.st) {
var rotatedPoint = Matrix3.multiplyByVector(textureMatrix, position, scratchCartesian2);
var projectedPoint = projection.project(ellipsoid.cartesianToCartographic(rotatedPoint, scratchCartographic), scratchCartesian3);
Cartesian3.subtract(projectedPoint, projectedCenter, projectedPoint);
texCoordScratch.x = (projectedPoint.x + semiMajorAxis) / (2.0 * semiMajorAxis);
texCoordScratch.y = (projectedPoint.y + semiMinorAxis) / (2.0 * semiMinorAxis);
minTexCoord.x = Math.min(texCoordScratch.x, minTexCoord.x);
minTexCoord.y = Math.min(texCoordScratch.y, minTexCoord.y);
maxTexCoord.x = Math.max(texCoordScratch.x, maxTexCoord.x);
maxTexCoord.y = Math.max(texCoordScratch.y, maxTexCoord.y);
textureCoordinates[textureCoordIndex + stOffset] = texCoordScratch.x;
textureCoordinates[textureCoordIndex + 1 + stOffset] = texCoordScratch.y;
textureCoordinates[textureCoordIndex++] = texCoordScratch.x;
textureCoordinates[textureCoordIndex++] = texCoordScratch.y;
}
position = ellipsoid.scaleToGeodeticSurface(position, position);
extrudedPosition = Cartesian3.clone(position, scratchCartesian2);
normal = ellipsoid.geodeticSurfaceNormal(position, normal);
var scaledNormal = Cartesian3.multiplyByScalar(normal, height, scratchCartesian4);
position = Cartesian3.add(position, scaledNormal, position);
scaledNormal = Cartesian3.multiplyByScalar(normal, extrudedHeight, scaledNormal);
extrudedPosition = Cartesian3.add(extrudedPosition, scaledNormal, extrudedPosition);
if (vertexFormat.position) {
finalPositions[i + length] = extrudedPosition.x;
finalPositions[i1 + length] = extrudedPosition.y;
finalPositions[i2 + length] = extrudedPosition.z;
finalPositions[i] = position.x;
finalPositions[i1] = position.y;
finalPositions[i2] = position.z;
}
if (vertexFormat.normal || vertexFormat.tangent || vertexFormat.binormal) {
binormal = Cartesian3.clone(normal, binormal);
var next = Cartesian3.fromArray(positions, (i + 3) % length, scratchCartesian4);
Cartesian3.subtract(next, position, next);
var bottom = Cartesian3.subtract(extrudedPosition, position, scratchCartesian3);
normal = Cartesian3.normalize(Cartesian3.cross(bottom, next, normal), normal);
if (vertexFormat.normal) {
normals[i] = normal.x;
normals[i1] = normal.y;
normals[i2] = normal.z;
normals[i + length] = normal.x;
normals[i1 + length] = normal.y;
normals[i2 + length] = normal.z;
}
if (vertexFormat.tangent) {
tangent = Cartesian3.normalize(Cartesian3.cross(binormal, normal, tangent), tangent);
tangents[i] = tangent.x;
tangents[i1] = tangent.y;
tangents[i2] = tangent.z;
tangents[i + length] = tangent.x;
tangents[i + 1 + length] = tangent.y;
tangents[i + 2 + length] = tangent.z;
}
if (vertexFormat.binormal) {
binormals[i] = binormal.x;
binormals[i1] = binormal.y;
binormals[i2] = binormal.z;
binormals[i + length] = binormal.x;
binormals[i1 + length] = binormal.y;
binormals[i2 + length] = binormal.z;
}
}
}
if (vertexFormat.st) {
length = textureCoordinates.length;
for (var k = 0; k < length; k += 2) {
textureCoordinates[k] = (textureCoordinates[k] - minTexCoord.x) / (maxTexCoord.x - minTexCoord.x);
textureCoordinates[k + 1] = (textureCoordinates[k + 1] - minTexCoord.y) / (maxTexCoord.y - minTexCoord.y);
}
}
var attributes = new GeometryAttributes();
if (vertexFormat.position) {
attributes.position = new GeometryAttribute({
componentDatatype : ComponentDatatype.DOUBLE,
componentsPerAttribute : 3,
values : finalPositions
});
}
if (vertexFormat.st) {
attributes.st = new GeometryAttribute({
componentDatatype : ComponentDatatype.FLOAT,
componentsPerAttribute : 2,
values : textureCoordinates
});
}
if (vertexFormat.normal) {
attributes.normal = new GeometryAttribute({
componentDatatype : ComponentDatatype.FLOAT,
componentsPerAttribute : 3,
values : normals
});
}
if (vertexFormat.tangent) {
attributes.tangent = new GeometryAttribute({
componentDatatype : ComponentDatatype.FLOAT,
componentsPerAttribute : 3,
values : tangents
});
}
if (vertexFormat.binormal) {
attributes.binormal = new GeometryAttribute({
componentDatatype : ComponentDatatype.FLOAT,
componentsPerAttribute : 3,
values : binormals
});
}
return attributes;
}
function computeWallIndices(positions) {
var length = positions.length / 3;
var indices = IndexDatatype.createTypedArray(length, length * 6);
var index = 0;
for (var i = 0; i < length; i++) {
var UL = i;
var LL = i + length;
var UR = (UL + 1) % length;
var LR = UR + length;
indices[index++] = UL;
indices[index++] = LL;
indices[index++] = UR;
indices[index++] = UR;
indices[index++] = LL;
indices[index++] = LR;
}
return indices;
}
var topBoundingSphere = new BoundingSphere();
var bottomBoundingSphere = new BoundingSphere();
function computeExtrudedEllipse(options) {
var center = options.center;
var ellipsoid = options.ellipsoid;
var semiMajorAxis = options.semiMajorAxis;
var scaledNormal = Cartesian3.multiplyByScalar(ellipsoid.geodeticSurfaceNormal(center, scratchCartesian1), options.height, scratchCartesian1);
topBoundingSphere.center = Cartesian3.add(center, scaledNormal, topBoundingSphere.center);
topBoundingSphere.radius = semiMajorAxis;
scaledNormal = Cartesian3.multiplyByScalar(ellipsoid.geodeticSurfaceNormal(center, scaledNormal), options.extrudedHeight, scaledNormal);
bottomBoundingSphere.center = Cartesian3.add(center, scaledNormal, bottomBoundingSphere.center);
bottomBoundingSphere.radius = semiMajorAxis;
var cep = EllipseGeometryLibrary.computeEllipsePositions(options, true, true);
var positions = cep.positions;
var numPts = cep.numPts;
var outerPositions = cep.outerPositions;
var boundingSphere = BoundingSphere.union(topBoundingSphere, bottomBoundingSphere);
var topBottomAttributes = computeTopBottomAttributes(positions, options, true);
var indices = topIndices(numPts);
var length = indices.length;
indices.length = length * 2;
var posLength = positions.length / 3;
for (var i = 0; i < length; i += 3) {
indices[i + length] = indices[i + 2] + posLength;
indices[i + 1 + length] = indices[i + 1] + posLength;
indices[i + 2 + length] = indices[i] + posLength;
}
var topBottomIndices = IndexDatatype.createTypedArray(posLength * 2 / 3, indices);
var topBottomGeo = new Geometry({
attributes : topBottomAttributes,
indices : topBottomIndices,
primitiveType : PrimitiveType.TRIANGLES
});
var wallAttributes = computeWallAttributes(outerPositions, options);
indices = computeWallIndices(outerPositions);
var wallIndices = IndexDatatype.createTypedArray(outerPositions.length * 2 / 3, indices);
var wallGeo = new Geometry({
attributes : wallAttributes,
indices : wallIndices,
primitiveType : PrimitiveType.TRIANGLES
});
var geo = GeometryPipeline.combineInstances([
new GeometryInstance({
geometry : topBottomGeo
}),
new GeometryInstance({
geometry : wallGeo
})
]);
return {
boundingSphere : boundingSphere,
attributes : geo[0].attributes,
indices : geo[0].indices
};
}
var scratchEnuToFixedMatrix = new Matrix4();
var scratchFixedToEnuMatrix = new Matrix4();
var scratchRotationMatrix = new Matrix3();
var scratchRectanglePoints = [new Cartesian3(), new Cartesian3(), new Cartesian3(), new Cartesian3()];
var scratchCartographicPoints = [new Cartographic(), new Cartographic(), new Cartographic(), new Cartographic()];
function computeRectangle(center, ellipsoid, semiMajorAxis, semiMinorAxis, rotation) {
Transforms.eastNorthUpToFixedFrame(center, ellipsoid, scratchEnuToFixedMatrix);
Matrix4.inverseTransformation(scratchEnuToFixedMatrix, scratchFixedToEnuMatrix);
// Find the 4 extreme points of the ellipse in ENU
for (var i = 0; i < 4; ++i) {
Cartesian3.clone(Cartesian3.ZERO, scratchRectanglePoints[i]);
}
scratchRectanglePoints[0].x += semiMajorAxis;
scratchRectanglePoints[1].x -= semiMajorAxis;
scratchRectanglePoints[2].y += semiMinorAxis;
scratchRectanglePoints[3].y -= semiMinorAxis;
Matrix3.fromRotationZ(rotation, scratchRotationMatrix);
for (i = 0; i < 4; ++i) {
// Apply the rotation
Matrix3.multiplyByVector(scratchRotationMatrix, scratchRectanglePoints[i], scratchRectanglePoints[i]);
// Convert back to fixed and then to cartographic
Matrix4.multiplyByPoint(scratchEnuToFixedMatrix, scratchRectanglePoints[i], scratchRectanglePoints[i]);
ellipsoid.cartesianToCartographic(scratchRectanglePoints[i], scratchCartographicPoints[i]);
}
return Rectangle.fromCartographicArray(scratchCartographicPoints);
}
/**
* A description of an ellipse on an ellipsoid. Ellipse geometry can be rendered with both {@link Primitive} and {@link GroundPrimitive}.
*
* @alias EllipseGeometry
* @constructor
*
* @param {Object} options Object with the following properties:
* @param {Cartesian3} options.center The ellipse's center point in the fixed frame.
* @param {Number} options.semiMajorAxis The length of the ellipse's semi-major axis in meters.
* @param {Number} options.semiMinorAxis The length of the ellipse's semi-minor axis in meters.
* @param {Ellipsoid} [options.ellipsoid=Ellipsoid.WGS84] The ellipsoid the ellipse will be on.
* @param {Number} [options.height=0.0] The distance in meters between the ellipse and the ellipsoid surface.
* @param {Number} [options.extrudedHeight] The distance in meters between the ellipse's extruded face and the ellipsoid surface.
* @param {Number} [options.rotation=0.0] The angle of rotation counter-clockwise from north.
* @param {Number} [options.stRotation=0.0] The rotation of the texture coordinates counter-clockwise from north.
* @param {Number} [options.granularity=CesiumMath.RADIANS_PER_DEGREE] The angular distance between points on the ellipse in radians.
* @param {VertexFormat} [options.vertexFormat=VertexFormat.DEFAULT] The vertex attributes to be computed.
*
* @exception {DeveloperError} semiMajorAxis and semiMinorAxis must be greater than zero.
* @exception {DeveloperError} semiMajorAxis must be greater than or equal to the semiMinorAxis.
* @exception {DeveloperError} granularity must be greater than zero.
*
*
* @example
* // Create an ellipse.
* var ellipse = new Cesium.EllipseGeometry({
* center : Cesium.Cartesian3.fromDegrees(-75.59777, 40.03883),
* semiMajorAxis : 500000.0,
* semiMinorAxis : 300000.0,
* rotation : Cesium.Math.toRadians(60.0)
* });
* var geometry = Cesium.EllipseGeometry.createGeometry(ellipse);
*
* @see EllipseGeometry.createGeometry
*/
function EllipseGeometry(options) {
options = defaultValue(options, defaultValue.EMPTY_OBJECT);
var center = options.center;
var ellipsoid = defaultValue(options.ellipsoid, Ellipsoid.WGS84);
var semiMajorAxis = options.semiMajorAxis;
var semiMinorAxis = options.semiMinorAxis;
var granularity = defaultValue(options.granularity, CesiumMath.RADIANS_PER_DEGREE);
var height = defaultValue(options.height, 0.0);
var extrudedHeight = options.extrudedHeight;
var extrude = (defined(extrudedHeight) && Math.abs(height - extrudedHeight) > 1.0);
var vertexFormat = defaultValue(options.vertexFormat, VertexFormat.DEFAULT);
//>>includeStart('debug', pragmas.debug);
if (!defined(center)) {
throw new DeveloperError('center is required.');
}
if (!defined(semiMajorAxis)) {
throw new DeveloperError('semiMajorAxis is required.');
}
if (!defined(semiMinorAxis)) {
throw new DeveloperError('semiMinorAxis is required.');
}
if (semiMajorAxis < semiMinorAxis) {
throw new DeveloperError('semiMajorAxis must be greater than or equal to the semiMinorAxis.');
}
if (granularity <= 0.0) {
throw new DeveloperError('granularity must be greater than zero.');
}
//>>includeEnd('debug');
this._center = Cartesian3.clone(center);
this._semiMajorAxis = semiMajorAxis;
this._semiMinorAxis = semiMinorAxis;
this._ellipsoid = Ellipsoid.clone(ellipsoid);
this._rotation = defaultValue(options.rotation, 0.0);
this._stRotation = defaultValue(options.stRotation, 0.0);
this._height = height;
this._granularity = granularity;
this._vertexFormat = VertexFormat.clone(vertexFormat);
this._extrudedHeight = defaultValue(extrudedHeight, height);
this._extrude = extrude;
this._workerName = 'createEllipseGeometry';
this._rectangle = computeRectangle(this._center, this._ellipsoid, semiMajorAxis, semiMinorAxis, this._rotation);
}
/**
* The number of elements used to pack the object into an array.
* @type {Number}
*/
EllipseGeometry.packedLength = Cartesian3.packedLength + Ellipsoid.packedLength + VertexFormat.packedLength + Rectangle.packedLength + 8;
/**
* Stores the provided instance into the provided array.
*
* @param {EllipseGeometry} value The value to pack.
* @param {Number[]} array The array to pack into.
* @param {Number} [startingIndex=0] The index into the array at which to start packing the elements.
*
* @returns {Number[]} The array that was packed into
*/
EllipseGeometry.pack = function(value, array, startingIndex) {
//>>includeStart('debug', pragmas.debug);
if (!defined(value)) {
throw new DeveloperError('value is required');
}
if (!defined(array)) {
throw new DeveloperError('array is required');
}
//>>includeEnd('debug');
startingIndex = defaultValue(startingIndex, 0);
Cartesian3.pack(value._center, array, startingIndex);
startingIndex += Cartesian3.packedLength;
Ellipsoid.pack(value._ellipsoid, array, startingIndex);
startingIndex += Ellipsoid.packedLength;
VertexFormat.pack(value._vertexFormat, array, startingIndex);
startingIndex += VertexFormat.packedLength;
Rectangle.pack(value._rectangle, array, startingIndex);
startingIndex += Rectangle.packedLength;
array[startingIndex++] = value._semiMajorAxis;
array[startingIndex++] = value._semiMinorAxis;
array[startingIndex++] = value._rotation;
array[startingIndex++] = value._stRotation;
array[startingIndex++] = value._height;
array[startingIndex++] = value._granularity;
array[startingIndex++] = value._extrudedHeight;
array[startingIndex] = value._extrude ? 1.0 : 0.0;
return array;
};
var scratchCenter = new Cartesian3();
var scratchEllipsoid = new Ellipsoid();
var scratchVertexFormat = new VertexFormat();
var scratchRectangle = new Rectangle();
var scratchOptions = {
center : scratchCenter,
ellipsoid : scratchEllipsoid,
vertexFormat : scratchVertexFormat,
semiMajorAxis : undefined,
semiMinorAxis : undefined,
rotation : undefined,
stRotation : undefined,
height : undefined,
granularity : undefined,
extrudedHeight : undefined
};
/**
* Retrieves an instance from a packed array.
*
* @param {Number[]} array The packed array.
* @param {Number} [startingIndex=0] The starting index of the element to be unpacked.
* @param {EllipseGeometry} [result] The object into which to store the result.
* @returns {EllipseGeometry} The modified result parameter or a new EllipseGeometry instance if one was not provided.
*/
EllipseGeometry.unpack = function(array, startingIndex, result) {
//>>includeStart('debug', pragmas.debug);
if (!defined(array)) {
throw new DeveloperError('array is required');
}
//>>includeEnd('debug');
startingIndex = defaultValue(startingIndex, 0);
var center = Cartesian3.unpack(array, startingIndex, scratchCenter);
startingIndex += Cartesian3.packedLength;
var ellipsoid = Ellipsoid.unpack(array, startingIndex, scratchEllipsoid);
startingIndex += Ellipsoid.packedLength;
var vertexFormat = VertexFormat.unpack(array, startingIndex, scratchVertexFormat);
startingIndex += VertexFormat.packedLength;
var rectangle = Rectangle.unpack(array, startingIndex, scratchRectangle);
startingIndex += Rectangle.packedLength;
var semiMajorAxis = array[startingIndex++];
var semiMinorAxis = array[startingIndex++];
var rotation = array[startingIndex++];
var stRotation = array[startingIndex++];
var height = array[startingIndex++];
var granularity = array[startingIndex++];
var extrudedHeight = array[startingIndex++];
var extrude = array[startingIndex] === 1.0;
if (!defined(result)) {
scratchOptions.height = height;
scratchOptions.extrudedHeight = extrudedHeight;
scratchOptions.granularity = granularity;
scratchOptions.stRotation = stRotation;
scratchOptions.rotation = rotation;
scratchOptions.semiMajorAxis = semiMajorAxis;
scratchOptions.semiMinorAxis = semiMinorAxis;
return new EllipseGeometry(scratchOptions);
}
result._center = Cartesian3.clone(center, result._center);
result._ellipsoid = Ellipsoid.clone(ellipsoid, result._ellipsoid);
result._vertexFormat = VertexFormat.clone(vertexFormat, result._vertexFormat);
result._semiMajorAxis = semiMajorAxis;
result._semiMinorAxis = semiMinorAxis;
result._rotation = rotation;
result._stRotation = stRotation;
result._height = height;
result._granularity = granularity;
result._extrudedHeight = extrudedHeight;
result._extrude = extrude;
result._rectangle = Rectangle.clone(rectangle);
return result;
};
/**
* Computes the geometric representation of a ellipse on an ellipsoid, including its vertices, indices, and a bounding sphere.
*
* @param {EllipseGeometry} ellipseGeometry A description of the ellipse.
* @returns {Geometry|undefined} The computed vertices and indices.
*/
EllipseGeometry.createGeometry = function(ellipseGeometry) {
if ((ellipseGeometry._semiMajorAxis <= 0.0) || (ellipseGeometry._semiMinorAxis <= 0.0)) {
return;
}
ellipseGeometry._center = ellipseGeometry._ellipsoid.scaleToGeodeticSurface(ellipseGeometry._center, ellipseGeometry._center);
var options = {
center : ellipseGeometry._center,
semiMajorAxis : ellipseGeometry._semiMajorAxis,
semiMinorAxis : ellipseGeometry._semiMinorAxis,
ellipsoid : ellipseGeometry._ellipsoid,
rotation : ellipseGeometry._rotation,
height : ellipseGeometry._height,
extrudedHeight : ellipseGeometry._extrudedHeight,
granularity : ellipseGeometry._granularity,
vertexFormat : ellipseGeometry._vertexFormat,
stRotation : ellipseGeometry._stRotation
};
var geometry;
if (ellipseGeometry._extrude) {
options.extrudedHeight = Math.min(ellipseGeometry._extrudedHeight, ellipseGeometry._height);
options.height = Math.max(ellipseGeometry._extrudedHeight, ellipseGeometry._height);
geometry = computeExtrudedEllipse(options);
} else {
geometry = computeEllipse(options);
}
return new Geometry({
attributes : geometry.attributes,
indices : geometry.indices,
primitiveType : PrimitiveType.TRIANGLES,
boundingSphere : geometry.boundingSphere
});
};
/**
* @private
*/
EllipseGeometry.createShadowVolume = function(ellipseGeometry, minHeightFunc, maxHeightFunc) {
var granularity = ellipseGeometry._granularity;
var ellipsoid = ellipseGeometry._ellipsoid;
var minHeight = minHeightFunc(granularity, ellipsoid);
var maxHeight = maxHeightFunc(granularity, ellipsoid);
return new EllipseGeometry({
center : ellipseGeometry._center,
semiMajorAxis : ellipseGeometry._semiMajorAxis,
semiMinorAxis : ellipseGeometry._semiMinorAxis,
ellipsoid : ellipsoid,
rotation : ellipseGeometry._rotation,
stRotation : ellipseGeometry._stRotation,
granularity : granularity,
extrudedHeight : minHeight,
height : maxHeight,
vertexFormat : VertexFormat.POSITION_ONLY
});
};
defineProperties(EllipseGeometry.prototype, {
/**
* @private
*/
rectangle : {
get : function() {
return this._rectangle;
}
}
});
return EllipseGeometry;
});