/*global define*/
define([
'./Cartesian3',
'./defaultValue',
'./defined',
'./defineProperties',
'./DeveloperError',
'./freezeObject',
'./HeadingPitchRoll',
'./Math'
], function(
Cartesian3,
defaultValue,
defined,
defineProperties,
DeveloperError,
freezeObject,
HeadingPitchRoll,
CesiumMath) {
'use strict';
/**
* A 3x3 matrix, indexable as a column-major order array.
* Constructor parameters are in row-major order for code readability.
* @alias Matrix3
* @constructor
*
* @param {Number} [column0Row0=0.0] The value for column 0, row 0.
* @param {Number} [column1Row0=0.0] The value for column 1, row 0.
* @param {Number} [column2Row0=0.0] The value for column 2, row 0.
* @param {Number} [column0Row1=0.0] The value for column 0, row 1.
* @param {Number} [column1Row1=0.0] The value for column 1, row 1.
* @param {Number} [column2Row1=0.0] The value for column 2, row 1.
* @param {Number} [column0Row2=0.0] The value for column 0, row 2.
* @param {Number} [column1Row2=0.0] The value for column 1, row 2.
* @param {Number} [column2Row2=0.0] The value for column 2, row 2.
*
* @see Matrix3.fromColumnMajorArray
* @see Matrix3.fromRowMajorArray
* @see Matrix3.fromQuaternion
* @see Matrix3.fromScale
* @see Matrix3.fromUniformScale
* @see Matrix2
* @see Matrix4
*/
function Matrix3(column0Row0, column1Row0, column2Row0,
column0Row1, column1Row1, column2Row1,
column0Row2, column1Row2, column2Row2) {
this[0] = defaultValue(column0Row0, 0.0);
this[1] = defaultValue(column0Row1, 0.0);
this[2] = defaultValue(column0Row2, 0.0);
this[3] = defaultValue(column1Row0, 0.0);
this[4] = defaultValue(column1Row1, 0.0);
this[5] = defaultValue(column1Row2, 0.0);
this[6] = defaultValue(column2Row0, 0.0);
this[7] = defaultValue(column2Row1, 0.0);
this[8] = defaultValue(column2Row2, 0.0);
}
/**
* The number of elements used to pack the object into an array.
* @type {Number}
*/
Matrix3.packedLength = 9;
/**
* Stores the provided instance into the provided array.
*
* @param {Matrix3} value The value to pack.
* @param {Number[]} array The array to pack into.
* @param {Number} [startingIndex=0] The index into the array at which to start packing the elements.
*
* @returns {Number[]} The array that was packed into
*/
Matrix3.pack = function(value, array, startingIndex) {
//>>includeStart('debug', pragmas.debug);
if (!defined(value)) {
throw new DeveloperError('value is required');
}
if (!defined(array)) {
throw new DeveloperError('array is required');
}
//>>includeEnd('debug');
startingIndex = defaultValue(startingIndex, 0);
array[startingIndex++] = value[0];
array[startingIndex++] = value[1];
array[startingIndex++] = value[2];
array[startingIndex++] = value[3];
array[startingIndex++] = value[4];
array[startingIndex++] = value[5];
array[startingIndex++] = value[6];
array[startingIndex++] = value[7];
array[startingIndex++] = value[8];
return array;
};
/**
* Retrieves an instance from a packed array.
*
* @param {Number[]} array The packed array.
* @param {Number} [startingIndex=0] The starting index of the element to be unpacked.
* @param {Matrix3} [result] The object into which to store the result.
* @returns {Matrix3} The modified result parameter or a new Matrix3 instance if one was not provided.
*/
Matrix3.unpack = function(array, startingIndex, result) {
//>>includeStart('debug', pragmas.debug);
if (!defined(array)) {
throw new DeveloperError('array is required');
}
//>>includeEnd('debug');
startingIndex = defaultValue(startingIndex, 0);
if (!defined(result)) {
result = new Matrix3();
}
result[0] = array[startingIndex++];
result[1] = array[startingIndex++];
result[2] = array[startingIndex++];
result[3] = array[startingIndex++];
result[4] = array[startingIndex++];
result[5] = array[startingIndex++];
result[6] = array[startingIndex++];
result[7] = array[startingIndex++];
result[8] = array[startingIndex++];
return result;
};
/**
* Duplicates a Matrix3 instance.
*
* @param {Matrix3} matrix The matrix to duplicate.
* @param {Matrix3} [result] The object onto which to store the result.
* @returns {Matrix3} The modified result parameter or a new Matrix3 instance if one was not provided. (Returns undefined if matrix is undefined)
*/
Matrix3.clone = function(values, result) {
if (!defined(values)) {
return undefined;
}
if (!defined(result)) {
return new Matrix3(values[0], values[3], values[6],
values[1], values[4], values[7],
values[2], values[5], values[8]);
}
result[0] = values[0];
result[1] = values[1];
result[2] = values[2];
result[3] = values[3];
result[4] = values[4];
result[5] = values[5];
result[6] = values[6];
result[7] = values[7];
result[8] = values[8];
return result;
};
/**
* Creates a Matrix3 from 9 consecutive elements in an array.
*
* @param {Number[]} array The array whose 9 consecutive elements correspond to the positions of the matrix. Assumes column-major order.
* @param {Number} [startingIndex=0] The offset into the array of the first element, which corresponds to first column first row position in the matrix.
* @param {Matrix3} [result] The object onto which to store the result.
* @returns {Matrix3} The modified result parameter or a new Matrix3 instance if one was not provided.
*
* @example
* // Create the Matrix3:
* // [1.0, 2.0, 3.0]
* // [1.0, 2.0, 3.0]
* // [1.0, 2.0, 3.0]
*
* var v = [1.0, 1.0, 1.0, 2.0, 2.0, 2.0, 3.0, 3.0, 3.0];
* var m = Cesium.Matrix3.fromArray(v);
*
* // Create same Matrix3 with using an offset into an array
* var v2 = [0.0, 0.0, 1.0, 1.0, 1.0, 2.0, 2.0, 2.0, 3.0, 3.0, 3.0];
* var m2 = Cesium.Matrix3.fromArray(v2, 2);
*/
Matrix3.fromArray = function(array, startingIndex, result) {
//>>includeStart('debug', pragmas.debug);
if (!defined(array)) {
throw new DeveloperError('array is required');
}
//>>includeEnd('debug');
startingIndex = defaultValue(startingIndex, 0);
if (!defined(result)) {
result = new Matrix3();
}
result[0] = array[startingIndex];
result[1] = array[startingIndex + 1];
result[2] = array[startingIndex + 2];
result[3] = array[startingIndex + 3];
result[4] = array[startingIndex + 4];
result[5] = array[startingIndex + 5];
result[6] = array[startingIndex + 6];
result[7] = array[startingIndex + 7];
result[8] = array[startingIndex + 8];
return result;
};
/**
* Creates a Matrix3 instance from a column-major order array.
*
* @param {Number[]} values The column-major order array.
* @param {Matrix3} [result] The object in which the result will be stored, if undefined a new instance will be created.
* @returns {Matrix3} The modified result parameter, or a new Matrix3 instance if one was not provided.
*/
Matrix3.fromColumnMajorArray = function(values, result) {
//>>includeStart('debug', pragmas.debug);
if (!defined(values)) {
throw new DeveloperError('values parameter is required');
}
//>>includeEnd('debug');
return Matrix3.clone(values, result);
};
/**
* Creates a Matrix3 instance from a row-major order array.
* The resulting matrix will be in column-major order.
*
* @param {Number[]} values The row-major order array.
* @param {Matrix3} [result] The object in which the result will be stored, if undefined a new instance will be created.
* @returns {Matrix3} The modified result parameter, or a new Matrix3 instance if one was not provided.
*/
Matrix3.fromRowMajorArray = function(values, result) {
//>>includeStart('debug', pragmas.debug);
if (!defined(values)) {
throw new DeveloperError('values is required.');
}
//>>includeEnd('debug');
if (!defined(result)) {
return new Matrix3(values[0], values[1], values[2],
values[3], values[4], values[5],
values[6], values[7], values[8]);
}
result[0] = values[0];
result[1] = values[3];
result[2] = values[6];
result[3] = values[1];
result[4] = values[4];
result[5] = values[7];
result[6] = values[2];
result[7] = values[5];
result[8] = values[8];
return result;
};
/**
* Computes a 3x3 rotation matrix from the provided quaternion.
*
* @param {Quaternion} quaternion the quaternion to use.
* @param {Matrix3} [result] The object in which the result will be stored, if undefined a new instance will be created.
* @returns {Matrix3} The 3x3 rotation matrix from this quaternion.
*/
Matrix3.fromQuaternion = function(quaternion, result) {
//>>includeStart('debug', pragmas.debug);
if (!defined(quaternion)) {
throw new DeveloperError('quaternion is required');
}
//>>includeEnd('debug');
var x2 = quaternion.x * quaternion.x;
var xy = quaternion.x * quaternion.y;
var xz = quaternion.x * quaternion.z;
var xw = quaternion.x * quaternion.w;
var y2 = quaternion.y * quaternion.y;
var yz = quaternion.y * quaternion.z;
var yw = quaternion.y * quaternion.w;
var z2 = quaternion.z * quaternion.z;
var zw = quaternion.z * quaternion.w;
var w2 = quaternion.w * quaternion.w;
var m00 = x2 - y2 - z2 + w2;
var m01 = 2.0 * (xy - zw);
var m02 = 2.0 * (xz + yw);
var m10 = 2.0 * (xy + zw);
var m11 = -x2 + y2 - z2 + w2;
var m12 = 2.0 * (yz - xw);
var m20 = 2.0 * (xz - yw);
var m21 = 2.0 * (yz + xw);
var m22 = -x2 - y2 + z2 + w2;
if (!defined(result)) {
return new Matrix3(m00, m01, m02,
m10, m11, m12,
m20, m21, m22);
}
result[0] = m00;
result[1] = m10;
result[2] = m20;
result[3] = m01;
result[4] = m11;
result[5] = m21;
result[6] = m02;
result[7] = m12;
result[8] = m22;
return result;
};
/**
* Computes a 3x3 rotation matrix from the provided headingPitchRoll. (see http://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles )
*
* @param {HeadingPitchRoll} headingPitchRoll the headingPitchRoll to use.
* @param {Matrix3} [result] The object in which the result will be stored, if undefined a new instance will be created.
* @returns {Matrix3} The 3x3 rotation matrix from this headingPitchRoll.
*/
Matrix3.fromHeadingPitchRoll = function(headingPitchRoll, result) {
//>>includeStart('debug', pragmas.debug);
if (!defined(headingPitchRoll)) {
throw new DeveloperError('headingPitchRoll is required');
}
//>>includeEnd('debug');
var cosTheta = Math.cos(-headingPitchRoll.pitch);
var cosPsi = Math.cos(-headingPitchRoll.heading);
var cosPhi = Math.cos(headingPitchRoll.roll);
var sinTheta = Math.sin(-headingPitchRoll.pitch);
var sinPsi = Math.sin(-headingPitchRoll.heading);
var sinPhi = Math.sin(headingPitchRoll.roll);
var m00 = cosTheta * cosPsi;
var m01 = -cosPhi * sinPsi + sinPhi * sinTheta * cosPsi;
var m02 = sinPhi * sinPsi + cosPhi * sinTheta * cosPsi;
var m10 = cosTheta * sinPsi;
var m11 = cosPhi * cosPsi + sinPhi * sinTheta * sinPsi;
var m12 = -sinTheta * cosPhi + cosPhi * sinTheta * sinPsi;
var m20 = -sinTheta;
var m21 = sinPhi * cosTheta;
var m22 = cosPhi * cosTheta;
if (!defined(result)) {
return new Matrix3(m00, m01, m02,
m10, m11, m12,
m20, m21, m22);
}
result[0] = m00;
result[1] = m10;
result[2] = m20;
result[3] = m01;
result[4] = m11;
result[5] = m21;
result[6] = m02;
result[7] = m12;
result[8] = m22;
return result;
};
/**
* Computes a Matrix3 instance representing a non-uniform scale.
*
* @param {Cartesian3} scale The x, y, and z scale factors.
* @param {Matrix3} [result] The object in which the result will be stored, if undefined a new instance will be created.
* @returns {Matrix3} The modified result parameter, or a new Matrix3 instance if one was not provided.
*
* @example
* // Creates
* // [7.0, 0.0, 0.0]
* // [0.0, 8.0, 0.0]
* // [0.0, 0.0, 9.0]
* var m = Cesium.Matrix3.fromScale(new Cesium.Cartesian3(7.0, 8.0, 9.0));
*/
Matrix3.fromScale = function(scale, result) {
//>>includeStart('debug', pragmas.debug);
if (!defined(scale)) {
throw new DeveloperError('scale is required.');
}
//>>includeEnd('debug');
if (!defined(result)) {
return new Matrix3(
scale.x, 0.0, 0.0,
0.0, scale.y, 0.0,
0.0, 0.0, scale.z);
}
result[0] = scale.x;
result[1] = 0.0;
result[2] = 0.0;
result[3] = 0.0;
result[4] = scale.y;
result[5] = 0.0;
result[6] = 0.0;
result[7] = 0.0;
result[8] = scale.z;
return result;
};
/**
* Computes a Matrix3 instance representing a uniform scale.
*
* @param {Number} scale The uniform scale factor.
* @param {Matrix3} [result] The object in which the result will be stored, if undefined a new instance will be created.
* @returns {Matrix3} The modified result parameter, or a new Matrix3 instance if one was not provided.
*
* @example
* // Creates
* // [2.0, 0.0, 0.0]
* // [0.0, 2.0, 0.0]
* // [0.0, 0.0, 2.0]
* var m = Cesium.Matrix3.fromUniformScale(2.0);
*/
Matrix3.fromUniformScale = function(scale, result) {
//>>includeStart('debug', pragmas.debug);
if (typeof scale !== 'number') {
throw new DeveloperError('scale is required.');
}
//>>includeEnd('debug');
if (!defined(result)) {
return new Matrix3(
scale, 0.0, 0.0,
0.0, scale, 0.0,
0.0, 0.0, scale);
}
result[0] = scale;
result[1] = 0.0;
result[2] = 0.0;
result[3] = 0.0;
result[4] = scale;
result[5] = 0.0;
result[6] = 0.0;
result[7] = 0.0;
result[8] = scale;
return result;
};
/**
* Computes a Matrix3 instance representing the cross product equivalent matrix of a Cartesian3 vector.
*
* @param {Cartesian3} the vector on the left hand side of the cross product operation.
* @param {Matrix3} [result] The object in which the result will be stored, if undefined a new instance will be created.
* @returns {Matrix3} The modified result parameter, or a new Matrix3 instance if one was not provided.
*
* @example
* // Creates
* // [0.0, -9.0, 8.0]
* // [9.0, 0.0, -7.0]
* // [-8.0, 7.0, 0.0]
* var m = Cesium.Matrix3.fromCrossProduct(new Cesium.Cartesian3(7.0, 8.0, 9.0));
*/
Matrix3.fromCrossProduct = function(vector, result) {
//>>includeStart('debug', pragmas.debug);
if (!defined(vector)) {
throw new DeveloperError('vector is required.');
}
//>>includeEnd('debug');
if (!defined(result)) {
return new Matrix3(
0.0, -vector.z, vector.y,
vector.z, 0.0, -vector.x,
-vector.y, vector.x, 0.0);
}
result[0] = 0.0;
result[1] = vector.z;
result[2] = -vector.y;
result[3] = -vector.z;
result[4] = 0.0;
result[5] = vector.x;
result[6] = vector.y;
result[7] = -vector.x;
result[8] = 0.0;
return result;
};
/**
* Creates a rotation matrix around the x-axis.
*
* @param {Number} angle The angle, in radians, of the rotation. Positive angles are counterclockwise.
* @param {Matrix3} [result] The object in which the result will be stored, if undefined a new instance will be created.
* @returns {Matrix3} The modified result parameter, or a new Matrix3 instance if one was not provided.
*
* @example
* // Rotate a point 45 degrees counterclockwise around the x-axis.
* var p = new Cesium.Cartesian3(5, 6, 7);
* var m = Cesium.Matrix3.fromRotationX(Cesium.Math.toRadians(45.0));
* var rotated = Cesium.Matrix3.multiplyByVector(m, p, new Cesium.Cartesian3());
*/
Matrix3.fromRotationX = function(angle, result) {
//>>includeStart('debug', pragmas.debug);
if (!defined(angle)) {
throw new DeveloperError('angle is required.');
}
//>>includeEnd('debug');
var cosAngle = Math.cos(angle);
var sinAngle = Math.sin(angle);
if (!defined(result)) {
return new Matrix3(
1.0, 0.0, 0.0,
0.0, cosAngle, -sinAngle,
0.0, sinAngle, cosAngle);
}
result[0] = 1.0;
result[1] = 0.0;
result[2] = 0.0;
result[3] = 0.0;
result[4] = cosAngle;
result[5] = sinAngle;
result[6] = 0.0;
result[7] = -sinAngle;
result[8] = cosAngle;
return result;
};
/**
* Creates a rotation matrix around the y-axis.
*
* @param {Number} angle The angle, in radians, of the rotation. Positive angles are counterclockwise.
* @param {Matrix3} [result] The object in which the result will be stored, if undefined a new instance will be created.
* @returns {Matrix3} The modified result parameter, or a new Matrix3 instance if one was not provided.
*
* @example
* // Rotate a point 45 degrees counterclockwise around the y-axis.
* var p = new Cesium.Cartesian3(5, 6, 7);
* var m = Cesium.Matrix3.fromRotationY(Cesium.Math.toRadians(45.0));
* var rotated = Cesium.Matrix3.multiplyByVector(m, p, new Cesium.Cartesian3());
*/
Matrix3.fromRotationY = function(angle, result) {
//>>includeStart('debug', pragmas.debug);
if (!defined(angle)) {
throw new DeveloperError('angle is required.');
}
//>>includeEnd('debug');
var cosAngle = Math.cos(angle);
var sinAngle = Math.sin(angle);
if (!defined(result)) {
return new Matrix3(
cosAngle, 0.0, sinAngle,
0.0, 1.0, 0.0,
-sinAngle, 0.0, cosAngle);
}
result[0] = cosAngle;
result[1] = 0.0;
result[2] = -sinAngle;
result[3] = 0.0;
result[4] = 1.0;
result[5] = 0.0;
result[6] = sinAngle;
result[7] = 0.0;
result[8] = cosAngle;
return result;
};
/**
* Creates a rotation matrix around the z-axis.
*
* @param {Number} angle The angle, in radians, of the rotation. Positive angles are counterclockwise.
* @param {Matrix3} [result] The object in which the result will be stored, if undefined a new instance will be created.
* @returns {Matrix3} The modified result parameter, or a new Matrix3 instance if one was not provided.
*
* @example
* // Rotate a point 45 degrees counterclockwise around the z-axis.
* var p = new Cesium.Cartesian3(5, 6, 7);
* var m = Cesium.Matrix3.fromRotationZ(Cesium.Math.toRadians(45.0));
* var rotated = Cesium.Matrix3.multiplyByVector(m, p, new Cesium.Cartesian3());
*/
Matrix3.fromRotationZ = function(angle, result) {
//>>includeStart('debug', pragmas.debug);
if (!defined(angle)) {
throw new DeveloperError('angle is required.');
}
//>>includeEnd('debug');
var cosAngle = Math.cos(angle);
var sinAngle = Math.sin(angle);
if (!defined(result)) {
return new Matrix3(
cosAngle, -sinAngle, 0.0,
sinAngle, cosAngle, 0.0,
0.0, 0.0, 1.0);
}
result[0] = cosAngle;
result[1] = sinAngle;
result[2] = 0.0;
result[3] = -sinAngle;
result[4] = cosAngle;
result[5] = 0.0;
result[6] = 0.0;
result[7] = 0.0;
result[8] = 1.0;
return result;
};
/**
* Creates an Array from the provided Matrix3 instance.
* The array will be in column-major order.
*
* @param {Matrix3} matrix The matrix to use..
* @param {Number[]} [result] The Array onto which to store the result.
* @returns {Number[]} The modified Array parameter or a new Array instance if one was not provided.
*/
Matrix3.toArray = function(matrix, result) {
//>>includeStart('debug', pragmas.debug);
if (!defined(matrix)) {
throw new DeveloperError('matrix is required');
}
//>>includeEnd('debug');
if (!defined(result)) {
return [matrix[0], matrix[1], matrix[2], matrix[3], matrix[4], matrix[5], matrix[6], matrix[7], matrix[8]];
}
result[0] = matrix[0];
result[1] = matrix[1];
result[2] = matrix[2];
result[3] = matrix[3];
result[4] = matrix[4];
result[5] = matrix[5];
result[6] = matrix[6];
result[7] = matrix[7];
result[8] = matrix[8];
return result;
};
/**
* Computes the array index of the element at the provided row and column.
*
* @param {Number} row The zero-based index of the row.
* @param {Number} column The zero-based index of the column.
* @returns {Number} The index of the element at the provided row and column.
*
* @exception {DeveloperError} row must be 0, 1, or 2.
* @exception {DeveloperError} column must be 0, 1, or 2.
*
* @example
* var myMatrix = new Cesium.Matrix3();
* var column1Row0Index = Cesium.Matrix3.getElementIndex(1, 0);
* var column1Row0 = myMatrix[column1Row0Index]
* myMatrix[column1Row0Index] = 10.0;
*/
Matrix3.getElementIndex = function(column, row) {
//>>includeStart('debug', pragmas.debug);
if (typeof row !== 'number' || row < 0 || row > 2) {
throw new DeveloperError('row must be 0, 1, or 2.');
}
if (typeof column !== 'number' || column < 0 || column > 2) {
throw new DeveloperError('column must be 0, 1, or 2.');
}
//>>includeEnd('debug');
return column * 3 + row;
};
/**
* Retrieves a copy of the matrix column at the provided index as a Cartesian3 instance.
*
* @param {Matrix3} matrix The matrix to use.
* @param {Number} index The zero-based index of the column to retrieve.
* @param {Cartesian3} result The object onto which to store the result.
* @returns {Cartesian3} The modified result parameter.
*
* @exception {DeveloperError} index must be 0, 1, or 2.
*/
Matrix3.getColumn = function(matrix, index, result) {
//>>includeStart('debug', pragmas.debug);
if (!defined(matrix)) {
throw new DeveloperError('matrix is required.');
}
if (typeof index !== 'number' || index < 0 || index > 2) {
throw new DeveloperError('index must be 0, 1, or 2.');
}
if (!defined(result)) {
throw new DeveloperError('result is required');
}
//>>includeEnd('debug');
var startIndex = index * 3;
var x = matrix[startIndex];
var y = matrix[startIndex + 1];
var z = matrix[startIndex + 2];
result.x = x;
result.y = y;
result.z = z;
return result;
};
/**
* Computes a new matrix that replaces the specified column in the provided matrix with the provided Cartesian3 instance.
*
* @param {Matrix3} matrix The matrix to use.
* @param {Number} index The zero-based index of the column to set.
* @param {Cartesian3} cartesian The Cartesian whose values will be assigned to the specified column.
* @param {Matrix3} result The object onto which to store the result.
* @returns {Matrix3} The modified result parameter.
*
* @exception {DeveloperError} index must be 0, 1, or 2.
*/
Matrix3.setColumn = function(matrix, index, cartesian, result) {
//>>includeStart('debug', pragmas.debug);
if (!defined(matrix)) {
throw new DeveloperError('matrix is required');
}
if (!defined(cartesian)) {
throw new DeveloperError('cartesian is required');
}
if (typeof index !== 'number' || index < 0 || index > 2) {
throw new DeveloperError('index must be 0, 1, or 2.');
}
if (!defined(result)) {
throw new DeveloperError('result is required');
}
//>>includeEnd('debug');
result = Matrix3.clone(matrix, result);
var startIndex = index * 3;
result[startIndex] = cartesian.x;
result[startIndex + 1] = cartesian.y;
result[startIndex + 2] = cartesian.z;
return result;
};
/**
* Retrieves a copy of the matrix row at the provided index as a Cartesian3 instance.
*
* @param {Matrix3} matrix The matrix to use.
* @param {Number} index The zero-based index of the row to retrieve.
* @param {Cartesian3} result The object onto which to store the result.
* @returns {Cartesian3} The modified result parameter.
*
* @exception {DeveloperError} index must be 0, 1, or 2.
*/
Matrix3.getRow = function(matrix, index, result) {
//>>includeStart('debug', pragmas.debug);
if (!defined(matrix)) {
throw new DeveloperError('matrix is required.');
}
if (typeof index !== 'number' || index < 0 || index > 2) {
throw new DeveloperError('index must be 0, 1, or 2.');
}
if (!defined(result)) {
throw new DeveloperError('result is required');
}
//>>includeEnd('debug');
var x = matrix[index];
var y = matrix[index + 3];
var z = matrix[index + 6];
result.x = x;
result.y = y;
result.z = z;
return result;
};
/**
* Computes a new matrix that replaces the specified row in the provided matrix with the provided Cartesian3 instance.
*
* @param {Matrix3} matrix The matrix to use.
* @param {Number} index The zero-based index of the row to set.
* @param {Cartesian3} cartesian The Cartesian whose values will be assigned to the specified row.
* @param {Matrix3} result The object onto which to store the result.
* @returns {Matrix3} The modified result parameter.
*
* @exception {DeveloperError} index must be 0, 1, or 2.
*/
Matrix3.setRow = function(matrix, index, cartesian, result) {
//>>includeStart('debug', pragmas.debug);
if (!defined(matrix)) {
throw new DeveloperError('matrix is required');
}
if (!defined(cartesian)) {
throw new DeveloperError('cartesian is required');
}
if (typeof index !== 'number' || index < 0 || index > 2) {
throw new DeveloperError('index must be 0, 1, or 2.');
}
if (!defined(result)) {
throw new DeveloperError('result is required');
}
//>>includeEnd('debug');
result = Matrix3.clone(matrix, result);
result[index] = cartesian.x;
result[index + 3] = cartesian.y;
result[index + 6] = cartesian.z;
return result;
};
var scratchColumn = new Cartesian3();
/**
* Extracts the non-uniform scale assuming the matrix is an affine transformation.
*
* @param {Matrix3} matrix The matrix.
* @param {Cartesian3} result The object onto which to store the result.
* @returns {Cartesian3} The modified result parameter.
*/
Matrix3.getScale = function(matrix, result) {
//>>includeStart('debug', pragmas.debug);
if (!defined(matrix)) {
throw new DeveloperError('matrix is required.');
}
if (!defined(result)) {
throw new DeveloperError('result is required');
}
//>>includeEnd('debug');
result.x = Cartesian3.magnitude(Cartesian3.fromElements(matrix[0], matrix[1], matrix[2], scratchColumn));
result.y = Cartesian3.magnitude(Cartesian3.fromElements(matrix[3], matrix[4], matrix[5], scratchColumn));
result.z = Cartesian3.magnitude(Cartesian3.fromElements(matrix[6], matrix[7], matrix[8], scratchColumn));
return result;
};
var scratchScale = new Cartesian3();
/**
* Computes the maximum scale assuming the matrix is an affine transformation.
* The maximum scale is the maximum length of the column vectors.
*
* @param {Matrix3} matrix The matrix.
* @returns {Number} The maximum scale.
*/
Matrix3.getMaximumScale = function(matrix) {
Matrix3.getScale(matrix, scratchScale);
return Cartesian3.maximumComponent(scratchScale);
};
/**
* Computes the product of two matrices.
*
* @param {Matrix3} left The first matrix.
* @param {Matrix3} right The second matrix.
* @param {Matrix3} result The object onto which to store the result.
* @returns {Matrix3} The modified result parameter.
*/
Matrix3.multiply = function(left, right, result) {
//>>includeStart('debug', pragmas.debug);
if (!defined(left)) {
throw new DeveloperError('left is required');
}
if (!defined(right)) {
throw new DeveloperError('right is required');
}
if (!defined(result)) {
throw new DeveloperError('result is required');
}
//>>includeEnd('debug');
var column0Row0 = left[0] * right[0] + left[3] * right[1] + left[6] * right[2];
var column0Row1 = left[1] * right[0] + left[4] * right[1] + left[7] * right[2];
var column0Row2 = left[2] * right[0] + left[5] * right[1] + left[8] * right[2];
var column1Row0 = left[0] * right[3] + left[3] * right[4] + left[6] * right[5];
var column1Row1 = left[1] * right[3] + left[4] * right[4] + left[7] * right[5];
var column1Row2 = left[2] * right[3] + left[5] * right[4] + left[8] * right[5];
var column2Row0 = left[0] * right[6] + left[3] * right[7] + left[6] * right[8];
var column2Row1 = left[1] * right[6] + left[4] * right[7] + left[7] * right[8];
var column2Row2 = left[2] * right[6] + left[5] * right[7] + left[8] * right[8];
result[0] = column0Row0;
result[1] = column0Row1;
result[2] = column0Row2;
result[3] = column1Row0;
result[4] = column1Row1;
result[5] = column1Row2;
result[6] = column2Row0;
result[7] = column2Row1;
result[8] = column2Row2;
return result;
};
/**
* Computes the sum of two matrices.
*
* @param {Matrix3} left The first matrix.
* @param {Matrix3} right The second matrix.
* @param {Matrix3} result The object onto which to store the result.
* @returns {Matrix3} The modified result parameter.
*/
Matrix3.add = function(left, right, result) {
//>>includeStart('debug', pragmas.debug);
if (!defined(left)) {
throw new DeveloperError('left is required');
}
if (!defined(right)) {
throw new DeveloperError('right is required');
}
if (!defined(result)) {
throw new DeveloperError('result is required');
}
//>>includeEnd('debug');
result[0] = left[0] + right[0];
result[1] = left[1] + right[1];
result[2] = left[2] + right[2];
result[3] = left[3] + right[3];
result[4] = left[4] + right[4];
result[5] = left[5] + right[5];
result[6] = left[6] + right[6];
result[7] = left[7] + right[7];
result[8] = left[8] + right[8];
return result;
};
/**
* Computes the difference of two matrices.
*
* @param {Matrix3} left The first matrix.
* @param {Matrix3} right The second matrix.
* @param {Matrix3} result The object onto which to store the result.
* @returns {Matrix3} The modified result parameter.
*/
Matrix3.subtract = function(left, right, result) {
//>>includeStart('debug', pragmas.debug);
if (!defined(left)) {
throw new DeveloperError('left is required');
}
if (!defined(right)) {
throw new DeveloperError('right is required');
}
if (!defined(result)) {
throw new DeveloperError('result is required');
}
//>>includeEnd('debug');
result[0] = left[0] - right[0];
result[1] = left[1] - right[1];
result[2] = left[2] - right[2];
result[3] = left[3] - right[3];
result[4] = left[4] - right[4];
result[5] = left[5] - right[5];
result[6] = left[6] - right[6];
result[7] = left[7] - right[7];
result[8] = left[8] - right[8];
return result;
};
/**
* Computes the product of a matrix and a column vector.
*
* @param {Matrix3} matrix The matrix.
* @param {Cartesian3} cartesian The column.
* @param {Cartesian3} result The object onto which to store the result.
* @returns {Cartesian3} The modified result parameter.
*/
Matrix3.multiplyByVector = function(matrix, cartesian, result) {
//>>includeStart('debug', pragmas.debug);
if (!defined(matrix)) {
throw new DeveloperError('matrix is required');
}
if (!defined(cartesian)) {
throw new DeveloperError('cartesian is required');
}
if (!defined(result)) {
throw new DeveloperError('result is required');
}
//>>includeEnd('debug');
var vX = cartesian.x;
var vY = cartesian.y;
var vZ = cartesian.z;
var x = matrix[0] * vX + matrix[3] * vY + matrix[6] * vZ;
var y = matrix[1] * vX + matrix[4] * vY + matrix[7] * vZ;
var z = matrix[2] * vX + matrix[5] * vY + matrix[8] * vZ;
result.x = x;
result.y = y;
result.z = z;
return result;
};
/**
* Computes the product of a matrix and a scalar.
*
* @param {Matrix3} matrix The matrix.
* @param {Number} scalar The number to multiply by.
* @param {Matrix3} result The object onto which to store the result.
* @returns {Matrix3} The modified result parameter.
*/
Matrix3.multiplyByScalar = function(matrix, scalar, result) {
//>>includeStart('debug', pragmas.debug);
if (!defined(matrix)) {
throw new DeveloperError('matrix is required');
}
if (typeof scalar !== 'number') {
throw new DeveloperError('scalar must be a number');
}
if (!defined(result)) {
throw new DeveloperError('result is required');
}
//>>includeEnd('debug');
result[0] = matrix[0] * scalar;
result[1] = matrix[1] * scalar;
result[2] = matrix[2] * scalar;
result[3] = matrix[3] * scalar;
result[4] = matrix[4] * scalar;
result[5] = matrix[5] * scalar;
result[6] = matrix[6] * scalar;
result[7] = matrix[7] * scalar;
result[8] = matrix[8] * scalar;
return result;
};
/**
* Computes the product of a matrix times a (non-uniform) scale, as if the scale were a scale matrix.
*
* @param {Matrix3} matrix The matrix on the left-hand side.
* @param {Cartesian3} scale The non-uniform scale on the right-hand side.
* @param {Matrix3} result The object onto which to store the result.
* @returns {Matrix3} The modified result parameter.
*
*
* @example
* // Instead of Cesium.Matrix3.multiply(m, Cesium.Matrix3.fromScale(scale), m);
* Cesium.Matrix3.multiplyByScale(m, scale, m);
*
* @see Matrix3.fromScale
* @see Matrix3.multiplyByUniformScale
*/
Matrix3.multiplyByScale = function(matrix, scale, result) {
//>>includeStart('debug', pragmas.debug);
if (!defined(matrix)) {
throw new DeveloperError('matrix is required');
}
if (!defined(scale)) {
throw new DeveloperError('scale is required');
}
if (!defined(result)) {
throw new DeveloperError('result is required');
}
//>>includeEnd('debug');
result[0] = matrix[0] * scale.x;
result[1] = matrix[1] * scale.x;
result[2] = matrix[2] * scale.x;
result[3] = matrix[3] * scale.y;
result[4] = matrix[4] * scale.y;
result[5] = matrix[5] * scale.y;
result[6] = matrix[6] * scale.z;
result[7] = matrix[7] * scale.z;
result[8] = matrix[8] * scale.z;
return result;
};
/**
* Creates a negated copy of the provided matrix.
*
* @param {Matrix3} matrix The matrix to negate.
* @param {Matrix3} result The object onto which to store the result.
* @returns {Matrix3} The modified result parameter.
*/
Matrix3.negate = function(matrix, result) {
//>>includeStart('debug', pragmas.debug);
if (!defined(matrix)) {
throw new DeveloperError('matrix is required');
}
if (!defined(result)) {
throw new DeveloperError('result is required');
}
//>>includeEnd('debug');
result[0] = -matrix[0];
result[1] = -matrix[1];
result[2] = -matrix[2];
result[3] = -matrix[3];
result[4] = -matrix[4];
result[5] = -matrix[5];
result[6] = -matrix[6];
result[7] = -matrix[7];
result[8] = -matrix[8];
return result;
};
/**
* Computes the transpose of the provided matrix.
*
* @param {Matrix3} matrix The matrix to transpose.
* @param {Matrix3} result The object onto which to store the result.
* @returns {Matrix3} The modified result parameter.
*/
Matrix3.transpose = function(matrix, result) {
//>>includeStart('debug', pragmas.debug);
if (!defined(matrix)) {
throw new DeveloperError('matrix is required');
}
if (!defined(result)) {
throw new DeveloperError('result is required');
}
//>>includeEnd('debug');
var column0Row0 = matrix[0];
var column0Row1 = matrix[3];
var column0Row2 = matrix[6];
var column1Row0 = matrix[1];
var column1Row1 = matrix[4];
var column1Row2 = matrix[7];
var column2Row0 = matrix[2];
var column2Row1 = matrix[5];
var column2Row2 = matrix[8];
result[0] = column0Row0;
result[1] = column0Row1;
result[2] = column0Row2;
result[3] = column1Row0;
result[4] = column1Row1;
result[5] = column1Row2;
result[6] = column2Row0;
result[7] = column2Row1;
result[8] = column2Row2;
return result;
};
function computeFrobeniusNorm(matrix) {
var norm = 0.0;
for (var i = 0; i < 9; ++i) {
var temp = matrix[i];
norm += temp * temp;
}
return Math.sqrt(norm);
}
var rowVal = [1, 0, 0];
var colVal = [2, 2, 1];
function offDiagonalFrobeniusNorm(matrix) {
// Computes the "off-diagonal" Frobenius norm.
// Assumes matrix is symmetric.
var norm = 0.0;
for (var i = 0; i < 3; ++i) {
var temp = matrix[Matrix3.getElementIndex(colVal[i], rowVal[i])];
norm += 2.0 * temp * temp;
}
return Math.sqrt(norm);
}
function shurDecomposition(matrix, result) {
// This routine was created based upon Matrix Computations, 3rd ed., by Golub and Van Loan,
// section 8.4.2 The 2by2 Symmetric Schur Decomposition.
//
// The routine takes a matrix, which is assumed to be symmetric, and
// finds the largest off-diagonal term, and then creates
// a matrix (result) which can be used to help reduce it
var tolerance = CesiumMath.EPSILON15;
var maxDiagonal = 0.0;
var rotAxis = 1;
// find pivot (rotAxis) based on max diagonal of matrix
for (var i = 0; i < 3; ++i) {
var temp = Math.abs(matrix[Matrix3.getElementIndex(colVal[i], rowVal[i])]);
if (temp > maxDiagonal) {
rotAxis = i;
maxDiagonal = temp;
}
}
var c = 1.0;
var s = 0.0;
var p = rowVal[rotAxis];
var q = colVal[rotAxis];
if (Math.abs(matrix[Matrix3.getElementIndex(q, p)]) > tolerance) {
var qq = matrix[Matrix3.getElementIndex(q, q)];
var pp = matrix[Matrix3.getElementIndex(p, p)];
var qp = matrix[Matrix3.getElementIndex(q, p)];
var tau = (qq - pp) / 2.0 / qp;
var t;
if (tau < 0.0) {
t = -1.0 / (-tau + Math.sqrt(1.0 + tau * tau));
} else {
t = 1.0 / (tau + Math.sqrt(1.0 + tau * tau));
}
c = 1.0 / Math.sqrt(1.0 + t * t);
s = t * c;
}
result = Matrix3.clone(Matrix3.IDENTITY, result);
result[Matrix3.getElementIndex(p, p)] = result[Matrix3.getElementIndex(q, q)] = c;
result[Matrix3.getElementIndex(q, p)] = s;
result[Matrix3.getElementIndex(p, q)] = -s;
return result;
}
var jMatrix = new Matrix3();
var jMatrixTranspose = new Matrix3();
/**
* Computes the eigenvectors and eigenvalues of a symmetric matrix.
* <p>
* Returns a diagonal matrix and unitary matrix such that:
* <code>matrix = unitary matrix * diagonal matrix * transpose(unitary matrix)</code>
* </p>
* <p>
* The values along the diagonal of the diagonal matrix are the eigenvalues. The columns
* of the unitary matrix are the corresponding eigenvectors.
* </p>
*
* @param {Matrix3} matrix The matrix to decompose into diagonal and unitary matrix. Expected to be symmetric.
* @param {Object} [result] An object with unitary and diagonal properties which are matrices onto which to store the result.
* @returns {Object} An object with unitary and diagonal properties which are the unitary and diagonal matrices, respectively.
*
* @example
* var a = //... symetric matrix
* var result = {
* unitary : new Cesium.Matrix3(),
* diagonal : new Cesium.Matrix3()
* };
* Cesium.Matrix3.computeEigenDecomposition(a, result);
*
* var unitaryTranspose = Cesium.Matrix3.transpose(result.unitary, new Cesium.Matrix3());
* var b = Cesium.Matrix3.multiply(result.unitary, result.diagonal, new Cesium.Matrix3());
* Cesium.Matrix3.multiply(b, unitaryTranspose, b); // b is now equal to a
*
* var lambda = Cesium.Matrix3.getColumn(result.diagonal, 0, new Cesium.Cartesian3()).x; // first eigenvalue
* var v = Cesium.Matrix3.getColumn(result.unitary, 0, new Cesium.Cartesian3()); // first eigenvector
* var c = Cesium.Cartesian3.multiplyByScalar(v, lambda, new Cesium.Cartesian3()); // equal to Cesium.Matrix3.multiplyByVector(a, v)
*/
Matrix3.computeEigenDecomposition = function(matrix, result) {
//>>includeStart('debug', pragmas.debug);
if (!defined(matrix)) {
throw new DeveloperError('matrix is required.');
}
//>>includeEnd('debug');
// This routine was created based upon Matrix Computations, 3rd ed., by Golub and Van Loan,
// section 8.4.3 The Classical Jacobi Algorithm
var tolerance = CesiumMath.EPSILON20;
var maxSweeps = 10;
var count = 0;
var sweep = 0;
if (!defined(result)) {
result = {};
}
var unitaryMatrix = result.unitary = Matrix3.clone(Matrix3.IDENTITY, result.unitary);
var diagMatrix = result.diagonal = Matrix3.clone(matrix, result.diagonal);
var epsilon = tolerance * computeFrobeniusNorm(diagMatrix);
while (sweep < maxSweeps && offDiagonalFrobeniusNorm(diagMatrix) > epsilon) {
shurDecomposition(diagMatrix, jMatrix);
Matrix3.transpose(jMatrix, jMatrixTranspose);
Matrix3.multiply(diagMatrix, jMatrix, diagMatrix);
Matrix3.multiply(jMatrixTranspose, diagMatrix, diagMatrix);
Matrix3.multiply(unitaryMatrix, jMatrix, unitaryMatrix);
if (++count > 2) {
++sweep;
count = 0;
}
}
return result;
};
/**
* Computes a matrix, which contains the absolute (unsigned) values of the provided matrix's elements.
*
* @param {Matrix3} matrix The matrix with signed elements.
* @param {Matrix3} result The object onto which to store the result.
* @returns {Matrix3} The modified result parameter.
*/
Matrix3.abs = function(matrix, result) {
//>>includeStart('debug', pragmas.debug);
if (!defined(matrix)) {
throw new DeveloperError('matrix is required');
}
if (!defined(result)) {
throw new DeveloperError('result is required');
}
//>>includeEnd('debug');
result[0] = Math.abs(matrix[0]);
result[1] = Math.abs(matrix[1]);
result[2] = Math.abs(matrix[2]);
result[3] = Math.abs(matrix[3]);
result[4] = Math.abs(matrix[4]);
result[5] = Math.abs(matrix[5]);
result[6] = Math.abs(matrix[6]);
result[7] = Math.abs(matrix[7]);
result[8] = Math.abs(matrix[8]);
return result;
};
/**
* Computes the determinant of the provided matrix.
*
* @param {Matrix3} matrix The matrix to use.
* @returns {Number} The value of the determinant of the matrix.
*/
Matrix3.determinant = function(matrix) {
//>>includeStart('debug', pragmas.debug);
if (!defined(matrix)) {
throw new DeveloperError('matrix is required');
}
//>>includeEnd('debug');
var m11 = matrix[0];
var m21 = matrix[3];
var m31 = matrix[6];
var m12 = matrix[1];
var m22 = matrix[4];
var m32 = matrix[7];
var m13 = matrix[2];
var m23 = matrix[5];
var m33 = matrix[8];
return m11 * (m22 * m33 - m23 * m32) + m12 * (m23 * m31 - m21 * m33) + m13 * (m21 * m32 - m22 * m31);
};
/**
* Computes the inverse of the provided matrix.
*
* @param {Matrix3} matrix The matrix to invert.
* @param {Matrix3} result The object onto which to store the result.
* @returns {Matrix3} The modified result parameter.
*
* @exception {DeveloperError} matrix is not invertible.
*/
Matrix3.inverse = function(matrix, result) {
//>>includeStart('debug', pragmas.debug);
if (!defined(matrix)) {
throw new DeveloperError('matrix is required');
}
if (!defined(result)) {
throw new DeveloperError('result is required');
}
//>>includeEnd('debug');
var m11 = matrix[0];
var m21 = matrix[1];
var m31 = matrix[2];
var m12 = matrix[3];
var m22 = matrix[4];
var m32 = matrix[5];
var m13 = matrix[6];
var m23 = matrix[7];
var m33 = matrix[8];
var determinant = Matrix3.determinant(matrix);
//>>includeStart('debug', pragmas.debug);
if (Math.abs(determinant) <= CesiumMath.EPSILON15) {
throw new DeveloperError('matrix is not invertible');
}
//>>includeEnd('debug');
result[0] = m22 * m33 - m23 * m32;
result[1] = m23 * m31 - m21 * m33;
result[2] = m21 * m32 - m22 * m31;
result[3] = m13 * m32 - m12 * m33;
result[4] = m11 * m33 - m13 * m31;
result[5] = m12 * m31 - m11 * m32;
result[6] = m12 * m23 - m13 * m22;
result[7] = m13 * m21 - m11 * m23;
result[8] = m11 * m22 - m12 * m21;
var scale = 1.0 / determinant;
return Matrix3.multiplyByScalar(result, scale, result);
};
/**
* Compares the provided matrices componentwise and returns
* <code>true</code> if they are equal, <code>false</code> otherwise.
*
* @param {Matrix3} [left] The first matrix.
* @param {Matrix3} [right] The second matrix.
* @returns {Boolean} <code>true</code> if left and right are equal, <code>false</code> otherwise.
*/
Matrix3.equals = function(left, right) {
return (left === right) ||
(defined(left) &&
defined(right) &&
left[0] === right[0] &&
left[1] === right[1] &&
left[2] === right[2] &&
left[3] === right[3] &&
left[4] === right[4] &&
left[5] === right[5] &&
left[6] === right[6] &&
left[7] === right[7] &&
left[8] === right[8]);
};
/**
* Compares the provided matrices componentwise and returns
* <code>true</code> if they are within the provided epsilon,
* <code>false</code> otherwise.
*
* @param {Matrix3} [left] The first matrix.
* @param {Matrix3} [right] The second matrix.
* @param {Number} epsilon The epsilon to use for equality testing.
* @returns {Boolean} <code>true</code> if left and right are within the provided epsilon, <code>false</code> otherwise.
*/
Matrix3.equalsEpsilon = function(left, right, epsilon) {
//>>includeStart('debug', pragmas.debug);
if (typeof epsilon !== 'number') {
throw new DeveloperError('epsilon must be a number');
}
//>>includeEnd('debug');
return (left === right) ||
(defined(left) &&
defined(right) &&
Math.abs(left[0] - right[0]) <= epsilon &&
Math.abs(left[1] - right[1]) <= epsilon &&
Math.abs(left[2] - right[2]) <= epsilon &&
Math.abs(left[3] - right[3]) <= epsilon &&
Math.abs(left[4] - right[4]) <= epsilon &&
Math.abs(left[5] - right[5]) <= epsilon &&
Math.abs(left[6] - right[6]) <= epsilon &&
Math.abs(left[7] - right[7]) <= epsilon &&
Math.abs(left[8] - right[8]) <= epsilon);
};
/**
* An immutable Matrix3 instance initialized to the identity matrix.
*
* @type {Matrix3}
* @constant
*/
Matrix3.IDENTITY = freezeObject(new Matrix3(1.0, 0.0, 0.0,
0.0, 1.0, 0.0,
0.0, 0.0, 1.0));
/**
* An immutable Matrix3 instance initialized to the zero matrix.
*
* @type {Matrix3}
* @constant
*/
Matrix3.ZERO = freezeObject(new Matrix3(0.0, 0.0, 0.0,
0.0, 0.0, 0.0,
0.0, 0.0, 0.0));
/**
* The index into Matrix3 for column 0, row 0.
*
* @type {Number}
* @constant
*/
Matrix3.COLUMN0ROW0 = 0;
/**
* The index into Matrix3 for column 0, row 1.
*
* @type {Number}
* @constant
*/
Matrix3.COLUMN0ROW1 = 1;
/**
* The index into Matrix3 for column 0, row 2.
*
* @type {Number}
* @constant
*/
Matrix3.COLUMN0ROW2 = 2;
/**
* The index into Matrix3 for column 1, row 0.
*
* @type {Number}
* @constant
*/
Matrix3.COLUMN1ROW0 = 3;
/**
* The index into Matrix3 for column 1, row 1.
*
* @type {Number}
* @constant
*/
Matrix3.COLUMN1ROW1 = 4;
/**
* The index into Matrix3 for column 1, row 2.
*
* @type {Number}
* @constant
*/
Matrix3.COLUMN1ROW2 = 5;
/**
* The index into Matrix3 for column 2, row 0.
*
* @type {Number}
* @constant
*/
Matrix3.COLUMN2ROW0 = 6;
/**
* The index into Matrix3 for column 2, row 1.
*
* @type {Number}
* @constant
*/
Matrix3.COLUMN2ROW1 = 7;
/**
* The index into Matrix3 for column 2, row 2.
*
* @type {Number}
* @constant
*/
Matrix3.COLUMN2ROW2 = 8;
defineProperties(Matrix3.prototype, {
/**
* Gets the number of items in the collection.
* @memberof Matrix3.prototype
*
* @type {Number}
*/
length : {
get : function() {
return Matrix3.packedLength;
}
}
});
/**
* Duplicates the provided Matrix3 instance.
*
* @param {Matrix3} [result] The object onto which to store the result.
* @returns {Matrix3} The modified result parameter or a new Matrix3 instance if one was not provided.
*/
Matrix3.prototype.clone = function(result) {
return Matrix3.clone(this, result);
};
/**
* Compares this matrix to the provided matrix componentwise and returns
* <code>true</code> if they are equal, <code>false</code> otherwise.
*
* @param {Matrix3} [right] The right hand side matrix.
* @returns {Boolean} <code>true</code> if they are equal, <code>false</code> otherwise.
*/
Matrix3.prototype.equals = function(right) {
return Matrix3.equals(this, right);
};
/**
* @private
*/
Matrix3.equalsArray = function(matrix, array, offset) {
return matrix[0] === array[offset] &&
matrix[1] === array[offset + 1] &&
matrix[2] === array[offset + 2] &&
matrix[3] === array[offset + 3] &&
matrix[4] === array[offset + 4] &&
matrix[5] === array[offset + 5] &&
matrix[6] === array[offset + 6] &&
matrix[7] === array[offset + 7] &&
matrix[8] === array[offset + 8];
};
/**
* Compares this matrix to the provided matrix componentwise and returns
* <code>true</code> if they are within the provided epsilon,
* <code>false</code> otherwise.
*
* @param {Matrix3} [right] The right hand side matrix.
* @param {Number} epsilon The epsilon to use for equality testing.
* @returns {Boolean} <code>true</code> if they are within the provided epsilon, <code>false</code> otherwise.
*/
Matrix3.prototype.equalsEpsilon = function(right, epsilon) {
return Matrix3.equalsEpsilon(this, right, epsilon);
};
/**
* Creates a string representing this Matrix with each row being
* on a separate line and in the format '(column0, column1, column2)'.
*
* @returns {String} A string representing the provided Matrix with each row being on a separate line and in the format '(column0, column1, column2)'.
*/
Matrix3.prototype.toString = function() {
return '(' + this[0] + ', ' + this[3] + ', ' + this[6] + ')\n' +
'(' + this[1] + ', ' + this[4] + ', ' + this[7] + ')\n' +
'(' + this[2] + ', ' + this[5] + ', ' + this[8] + ')';
};
return Matrix3;
});