/*global define*/
define([
'./Cartesian3',
'./defined',
'./DeveloperError',
'./freezeObject'
], function(
Cartesian3,
defined,
DeveloperError,
freezeObject) {
'use strict';
/**
* A plane in Hessian Normal Form defined by
* <pre>
* ax + by + cz + d = 0
* </pre>
* where (a, b, c) is the plane's <code>normal</code>, d is the signed
* <code>distance</code> to the plane, and (x, y, z) is any point on
* the plane.
*
* @alias Plane
* @constructor
*
* @param {Cartesian3} normal The plane's normal (normalized).
* @param {Number} distance The shortest distance from the origin to the plane. The sign of
* <code>distance</code> determines which side of the plane the origin
* is on. If <code>distance</code> is positive, the origin is in the half-space
* in the direction of the normal; if negative, the origin is in the half-space
* opposite to the normal; if zero, the plane passes through the origin.
*
* @example
* // The plane x=0
* var plane = new Cesium.Plane(Cesium.Cartesian3.UNIT_X, 0.0);
*/
function Plane(normal, distance) {
//>>includeStart('debug', pragmas.debug);
if (!defined(normal)) {
throw new DeveloperError('normal is required.');
}
if (!defined(distance)) {
throw new DeveloperError('distance is required.');
}
//>>includeEnd('debug');
/**
* The plane's normal.
*
* @type {Cartesian3}
*/
this.normal = Cartesian3.clone(normal);
/**
* The shortest distance from the origin to the plane. The sign of
* <code>distance</code> determines which side of the plane the origin
* is on. If <code>distance</code> is positive, the origin is in the half-space
* in the direction of the normal; if negative, the origin is in the half-space
* opposite to the normal; if zero, the plane passes through the origin.
*
* @type {Number}
*/
this.distance = distance;
}
/**
* Creates a plane from a normal and a point on the plane.
*
* @param {Cartesian3} point The point on the plane.
* @param {Cartesian3} normal The plane's normal (normalized).
* @param {Plane} [result] The object onto which to store the result.
* @returns {Plane} A new plane instance or the modified result parameter.
*
* @example
* var point = Cesium.Cartesian3.fromDegrees(-72.0, 40.0);
* var normal = ellipsoid.geodeticSurfaceNormal(point);
* var tangentPlane = Cesium.Plane.fromPointNormal(point, normal);
*/
Plane.fromPointNormal = function(point, normal, result) {
//>>includeStart('debug', pragmas.debug);
if (!defined(point)) {
throw new DeveloperError('point is required.');
}
if (!defined(normal)) {
throw new DeveloperError('normal is required.');
}
//>>includeEnd('debug');
var distance = -Cartesian3.dot(normal, point);
if (!defined(result)) {
return new Plane(normal, distance);
}
Cartesian3.clone(normal, result.normal);
result.distance = distance;
return result;
};
var scratchNormal = new Cartesian3();
/**
* Creates a plane from the general equation
*
* @param {Cartesian4} coefficients The plane's normal (normalized).
* @param {Plane} [result] The object onto which to store the result.
* @returns {Plane} A new plane instance or the modified result parameter.
*/
Plane.fromCartesian4 = function(coefficients, result) {
//>>includeStart('debug', pragmas.debug);
if (!defined(coefficients)) {
throw new DeveloperError('coefficients is required.');
}
//>>includeEnd('debug');
var normal = Cartesian3.fromCartesian4(coefficients, scratchNormal);
var distance = coefficients.w;
if (!defined(result)) {
return new Plane(normal, distance);
} else {
Cartesian3.clone(normal, result.normal);
result.distance = distance;
return result;
}
};
/**
* Computes the signed shortest distance of a point to a plane.
* The sign of the distance determines which side of the plane the point
* is on. If the distance is positive, the point is in the half-space
* in the direction of the normal; if negative, the point is in the half-space
* opposite to the normal; if zero, the plane passes through the point.
*
* @param {Plane} plane The plane.
* @param {Cartesian3} point The point.
* @returns {Number} The signed shortest distance of the point to the plane.
*/
Plane.getPointDistance = function(plane, point) {
//>>includeStart('debug', pragmas.debug);
if (!defined(plane)) {
throw new DeveloperError('plane is required.');
}
if (!defined(point)) {
throw new DeveloperError('point is required.');
}
//>>includeEnd('debug');
return Cartesian3.dot(plane.normal, point) + plane.distance;
};
/**
* A constant initialized to the XY plane passing through the origin, with normal in positive Z.
*
* @type {Plane}
* @constant
*/
Plane.ORIGIN_XY_PLANE = freezeObject(new Plane(Cartesian3.UNIT_Z, 0.0));
/**
* A constant initialized to the YZ plane passing through the origin, with normal in positive X.
*
* @type {Plane}
* @constant
*/
Plane.ORIGIN_YZ_PLANE = freezeObject(new Plane(Cartesian3.UNIT_X, 0.0));
/**
* A constant initialized to the ZX plane passing through the origin, with normal in positive Y.
*
* @type {Plane}
* @constant
*/
Plane.ORIGIN_ZX_PLANE = freezeObject(new Plane(Cartesian3.UNIT_Y, 0.0));
return Plane;
});