/*global define*/
define([
'./arrayRemoveDuplicates',
'./BoundingSphere',
'./Cartesian3',
'./Color',
'./ComponentDatatype',
'./defaultValue',
'./defined',
'./DeveloperError',
'./Ellipsoid',
'./Geometry',
'./GeometryAttribute',
'./GeometryAttributes',
'./GeometryType',
'./IndexDatatype',
'./Math',
'./PolylinePipeline',
'./PrimitiveType',
'./VertexFormat'
], function(
arrayRemoveDuplicates,
BoundingSphere,
Cartesian3,
Color,
ComponentDatatype,
defaultValue,
defined,
DeveloperError,
Ellipsoid,
Geometry,
GeometryAttribute,
GeometryAttributes,
GeometryType,
IndexDatatype,
CesiumMath,
PolylinePipeline,
PrimitiveType,
VertexFormat) {
'use strict';
var scratchInterpolateColorsArray = [];
function interpolateColors(p0, p1, color0, color1, numPoints) {
var colors = scratchInterpolateColorsArray;
colors.length = numPoints;
var i;
var r0 = color0.red;
var g0 = color0.green;
var b0 = color0.blue;
var a0 = color0.alpha;
var r1 = color1.red;
var g1 = color1.green;
var b1 = color1.blue;
var a1 = color1.alpha;
if (Color.equals(color0, color1)) {
for (i = 0; i < numPoints; i++) {
colors[i] = Color.clone(color0);
}
return colors;
}
var redPerVertex = (r1 - r0) / numPoints;
var greenPerVertex = (g1 - g0) / numPoints;
var bluePerVertex = (b1 - b0) / numPoints;
var alphaPerVertex = (a1 - a0) / numPoints;
for (i = 0; i < numPoints; i++) {
colors[i] = new Color(r0 + i * redPerVertex, g0 + i * greenPerVertex, b0 + i * bluePerVertex, a0 + i * alphaPerVertex);
}
return colors;
}
/**
* A description of a polyline modeled as a line strip; the first two positions define a line segment,
* and each additional position defines a line segment from the previous position. The polyline is capable of
* displaying with a material.
*
* @alias PolylineGeometry
* @constructor
*
* @param {Object} options Object with the following properties:
* @param {Cartesian3[]} options.positions An array of {@link Cartesian3} defining the positions in the polyline as a line strip.
* @param {Number} [options.width=1.0] The width in pixels.
* @param {Color[]} [options.colors] An Array of {@link Color} defining the per vertex or per segment colors.
* @param {Boolean} [options.colorsPerVertex=false] A boolean that determines whether the colors will be flat across each segment of the line or interpolated across the vertices.
* @param {Boolean} [options.followSurface=true] A boolean that determines whether positions will be adjusted to the surface of the ellipsoid via a great arc.
* @param {Number} [options.granularity=CesiumMath.RADIANS_PER_DEGREE] The distance, in radians, between each latitude and longitude if options.followSurface=true. Determines the number of positions in the buffer.
* @param {VertexFormat} [options.vertexFormat=VertexFormat.DEFAULT] The vertex attributes to be computed.
* @param {Ellipsoid} [options.ellipsoid=Ellipsoid.WGS84] The ellipsoid to be used as a reference.
*
* @exception {DeveloperError} At least two positions are required.
* @exception {DeveloperError} width must be greater than or equal to one.
* @exception {DeveloperError} colors has an invalid length.
*
* @see PolylineGeometry#createGeometry
*
* @demo {@link http://cesiumjs.org/Cesium/Apps/Sandcastle/index.html?src=Polyline.html|Cesium Sandcastle Polyline Demo}
*
* @example
* // A polyline with two connected line segments
* var polyline = new Cesium.PolylineGeometry({
* positions : Cesium.Cartesian3.fromDegreesArray([
* 0.0, 0.0,
* 5.0, 0.0,
* 5.0, 5.0
* ]),
* width : 10.0
* });
* var geometry = Cesium.PolylineGeometry.createGeometry(polyline);
*/
function PolylineGeometry(options) {
options = defaultValue(options, defaultValue.EMPTY_OBJECT);
var positions = options.positions;
var colors = options.colors;
var width = defaultValue(options.width, 1.0);
var colorsPerVertex = defaultValue(options.colorsPerVertex, false);
//>>includeStart('debug', pragmas.debug);
if ((!defined(positions)) || (positions.length < 2)) {
throw new DeveloperError('At least two positions are required.');
}
if (width < 1.0) {
throw new DeveloperError('width must be greater than or equal to one.');
}
if (defined(colors) && ((colorsPerVertex && colors.length < positions.length) || (!colorsPerVertex && colors.length < positions.length - 1))) {
throw new DeveloperError('colors has an invalid length.');
}
//>>includeEnd('debug');
this._positions = positions;
this._colors = colors;
this._width = width;
this._colorsPerVertex = colorsPerVertex;
this._vertexFormat = VertexFormat.clone(defaultValue(options.vertexFormat, VertexFormat.DEFAULT));
this._followSurface = defaultValue(options.followSurface, true);
this._granularity = defaultValue(options.granularity, CesiumMath.RADIANS_PER_DEGREE);
this._ellipsoid = Ellipsoid.clone(defaultValue(options.ellipsoid, Ellipsoid.WGS84));
this._workerName = 'createPolylineGeometry';
var numComponents = 1 + positions.length * Cartesian3.packedLength;
numComponents += defined(colors) ? 1 + colors.length * Color.packedLength : 1;
/**
* The number of elements used to pack the object into an array.
* @type {Number}
*/
this.packedLength = numComponents + Ellipsoid.packedLength + VertexFormat.packedLength + 4;
}
/**
* Stores the provided instance into the provided array.
*
* @param {PolylineGeometry} value The value to pack.
* @param {Number[]} array The array to pack into.
* @param {Number} [startingIndex=0] The index into the array at which to start packing the elements.
*
* @returns {Number[]} The array that was packed into
*/
PolylineGeometry.pack = function(value, array, startingIndex) {
//>>includeStart('debug', pragmas.debug);
if (!defined(value)) {
throw new DeveloperError('value is required');
}
if (!defined(array)) {
throw new DeveloperError('array is required');
}
//>>includeEnd('debug');
startingIndex = defaultValue(startingIndex, 0);
var i;
var positions = value._positions;
var length = positions.length;
array[startingIndex++] = length;
for (i = 0; i < length; ++i, startingIndex += Cartesian3.packedLength) {
Cartesian3.pack(positions[i], array, startingIndex);
}
var colors = value._colors;
length = defined(colors) ? colors.length : 0.0;
array[startingIndex++] = length;
for (i = 0; i < length; ++i, startingIndex += Color.packedLength) {
Color.pack(colors[i], array, startingIndex);
}
Ellipsoid.pack(value._ellipsoid, array, startingIndex);
startingIndex += Ellipsoid.packedLength;
VertexFormat.pack(value._vertexFormat, array, startingIndex);
startingIndex += VertexFormat.packedLength;
array[startingIndex++] = value._width;
array[startingIndex++] = value._colorsPerVertex ? 1.0 : 0.0;
array[startingIndex++] = value._followSurface ? 1.0 : 0.0;
array[startingIndex] = value._granularity;
return array;
};
var scratchEllipsoid = Ellipsoid.clone(Ellipsoid.UNIT_SPHERE);
var scratchVertexFormat = new VertexFormat();
var scratchOptions = {
positions : undefined,
colors : undefined,
ellipsoid : scratchEllipsoid,
vertexFormat : scratchVertexFormat,
width : undefined,
colorsPerVertex : undefined,
followSurface : undefined,
granularity : undefined
};
/**
* Retrieves an instance from a packed array.
*
* @param {Number[]} array The packed array.
* @param {Number} [startingIndex=0] The starting index of the element to be unpacked.
* @param {PolylineGeometry} [result] The object into which to store the result.
* @returns {PolylineGeometry} The modified result parameter or a new PolylineGeometry instance if one was not provided.
*/
PolylineGeometry.unpack = function(array, startingIndex, result) {
//>>includeStart('debug', pragmas.debug);
if (!defined(array)) {
throw new DeveloperError('array is required');
}
//>>includeEnd('debug');
startingIndex = defaultValue(startingIndex, 0);
var i;
var length = array[startingIndex++];
var positions = new Array(length);
for (i = 0; i < length; ++i, startingIndex += Cartesian3.packedLength) {
positions[i] = Cartesian3.unpack(array, startingIndex);
}
length = array[startingIndex++];
var colors = length > 0 ? new Array(length) : undefined;
for (i = 0; i < length; ++i, startingIndex += Color.packedLength) {
colors[i] = Color.unpack(array, startingIndex);
}
var ellipsoid = Ellipsoid.unpack(array, startingIndex, scratchEllipsoid);
startingIndex += Ellipsoid.packedLength;
var vertexFormat = VertexFormat.unpack(array, startingIndex, scratchVertexFormat);
startingIndex += VertexFormat.packedLength;
var width = array[startingIndex++];
var colorsPerVertex = array[startingIndex++] === 1.0;
var followSurface = array[startingIndex++] === 1.0;
var granularity = array[startingIndex];
if (!defined(result)) {
scratchOptions.positions = positions;
scratchOptions.colors = colors;
scratchOptions.width = width;
scratchOptions.colorsPerVertex = colorsPerVertex;
scratchOptions.followSurface = followSurface;
scratchOptions.granularity = granularity;
return new PolylineGeometry(scratchOptions);
}
result._positions = positions;
result._colors = colors;
result._ellipsoid = Ellipsoid.clone(ellipsoid, result._ellipsoid);
result._vertexFormat = VertexFormat.clone(vertexFormat, result._vertexFormat);
result._width = width;
result._colorsPerVertex = colorsPerVertex;
result._followSurface = followSurface;
result._granularity = granularity;
return result;
};
var scratchCartesian3 = new Cartesian3();
var scratchPosition = new Cartesian3();
var scratchPrevPosition = new Cartesian3();
var scratchNextPosition = new Cartesian3();
/**
* Computes the geometric representation of a polyline, including its vertices, indices, and a bounding sphere.
*
* @param {PolylineGeometry} polylineGeometry A description of the polyline.
* @returns {Geometry|undefined} The computed vertices and indices.
*/
PolylineGeometry.createGeometry = function(polylineGeometry) {
var width = polylineGeometry._width;
var vertexFormat = polylineGeometry._vertexFormat;
var colors = polylineGeometry._colors;
var colorsPerVertex = polylineGeometry._colorsPerVertex;
var followSurface = polylineGeometry._followSurface;
var granularity = polylineGeometry._granularity;
var ellipsoid = polylineGeometry._ellipsoid;
var i;
var j;
var k;
var positions = arrayRemoveDuplicates(polylineGeometry._positions, Cartesian3.equalsEpsilon);
var positionsLength = positions.length;
if (positionsLength < 2) {
return undefined;
}
if (followSurface) {
var heights = PolylinePipeline.extractHeights(positions, ellipsoid);
var minDistance = CesiumMath.chordLength(granularity, ellipsoid.maximumRadius);
if (defined(colors)) {
var colorLength = 1;
for (i = 0; i < positionsLength - 1; ++i) {
colorLength += PolylinePipeline.numberOfPoints(positions[i], positions[i+1], minDistance);
}
var newColors = new Array(colorLength);
var newColorIndex = 0;
for (i = 0; i < positionsLength - 1; ++i) {
var p0 = positions[i];
var p1 = positions[i+1];
var c0 = colors[i];
var numColors = PolylinePipeline.numberOfPoints(p0, p1, minDistance);
if (colorsPerVertex && i < colorLength) {
var c1 = colors[i+1];
var interpolatedColors = interpolateColors(p0, p1, c0, c1, numColors);
var interpolatedColorsLength = interpolatedColors.length;
for (j = 0; j < interpolatedColorsLength; ++j) {
newColors[newColorIndex++] = interpolatedColors[j];
}
} else {
for (j = 0; j < numColors; ++j) {
newColors[newColorIndex++] = Color.clone(c0);
}
}
}
newColors[newColorIndex] = Color.clone(colors[colors.length-1]);
colors = newColors;
scratchInterpolateColorsArray.length = 0;
}
positions = PolylinePipeline.generateCartesianArc({
positions: positions,
minDistance: minDistance,
ellipsoid: ellipsoid,
height: heights
});
}
positionsLength = positions.length;
var size = positionsLength * 4.0 - 4.0;
var finalPositions = new Float64Array(size * 3);
var prevPositions = new Float64Array(size * 3);
var nextPositions = new Float64Array(size * 3);
var expandAndWidth = new Float32Array(size * 2);
var st = vertexFormat.st ? new Float32Array(size * 2) : undefined;
var finalColors = defined(colors) ? new Uint8Array(size * 4) : undefined;
var positionIndex = 0;
var expandAndWidthIndex = 0;
var stIndex = 0;
var colorIndex = 0;
var position;
for (j = 0; j < positionsLength; ++j) {
if (j === 0) {
position = scratchCartesian3;
Cartesian3.subtract(positions[0], positions[1], position);
Cartesian3.add(positions[0], position, position);
} else {
position = positions[j - 1];
}
Cartesian3.clone(position, scratchPrevPosition);
Cartesian3.clone(positions[j], scratchPosition);
if (j === positionsLength - 1) {
position = scratchCartesian3;
Cartesian3.subtract(positions[positionsLength - 1], positions[positionsLength - 2], position);
Cartesian3.add(positions[positionsLength - 1], position, position);
} else {
position = positions[j + 1];
}
Cartesian3.clone(position, scratchNextPosition);
var color0, color1;
if (defined(finalColors)) {
if (j !== 0 && !colorsPerVertex) {
color0 = colors[j - 1];
} else {
color0 = colors[j];
}
if (j !== positionsLength - 1) {
color1 = colors[j];
}
}
var startK = j === 0 ? 2 : 0;
var endK = j === positionsLength - 1 ? 2 : 4;
for (k = startK; k < endK; ++k) {
Cartesian3.pack(scratchPosition, finalPositions, positionIndex);
Cartesian3.pack(scratchPrevPosition, prevPositions, positionIndex);
Cartesian3.pack(scratchNextPosition, nextPositions, positionIndex);
positionIndex += 3;
var direction = (k - 2 < 0) ? -1.0 : 1.0;
expandAndWidth[expandAndWidthIndex++] = 2 * (k % 2) - 1; // expand direction
expandAndWidth[expandAndWidthIndex++] = direction * width;
if (vertexFormat.st) {
st[stIndex++] = j / (positionsLength - 1);
st[stIndex++] = Math.max(expandAndWidth[expandAndWidthIndex - 2], 0.0);
}
if (defined(finalColors)) {
var color = (k < 2) ? color0 : color1;
finalColors[colorIndex++] = Color.floatToByte(color.red);
finalColors[colorIndex++] = Color.floatToByte(color.green);
finalColors[colorIndex++] = Color.floatToByte(color.blue);
finalColors[colorIndex++] = Color.floatToByte(color.alpha);
}
}
}
var attributes = new GeometryAttributes();
attributes.position = new GeometryAttribute({
componentDatatype : ComponentDatatype.DOUBLE,
componentsPerAttribute : 3,
values : finalPositions
});
attributes.prevPosition = new GeometryAttribute({
componentDatatype : ComponentDatatype.DOUBLE,
componentsPerAttribute : 3,
values : prevPositions
});
attributes.nextPosition = new GeometryAttribute({
componentDatatype : ComponentDatatype.DOUBLE,
componentsPerAttribute : 3,
values : nextPositions
});
attributes.expandAndWidth = new GeometryAttribute({
componentDatatype : ComponentDatatype.FLOAT,
componentsPerAttribute : 2,
values : expandAndWidth
});
if (vertexFormat.st) {
attributes.st = new GeometryAttribute({
componentDatatype : ComponentDatatype.FLOAT,
componentsPerAttribute : 2,
values : st
});
}
if (defined(finalColors)) {
attributes.color = new GeometryAttribute({
componentDatatype : ComponentDatatype.UNSIGNED_BYTE,
componentsPerAttribute : 4,
values : finalColors,
normalize : true
});
}
var indices = IndexDatatype.createTypedArray(size, positionsLength * 6 - 6);
var index = 0;
var indicesIndex = 0;
var length = positionsLength - 1.0;
for (j = 0; j < length; ++j) {
indices[indicesIndex++] = index;
indices[indicesIndex++] = index + 2;
indices[indicesIndex++] = index + 1;
indices[indicesIndex++] = index + 1;
indices[indicesIndex++] = index + 2;
indices[indicesIndex++] = index + 3;
index += 4;
}
return new Geometry({
attributes : attributes,
indices : indices,
primitiveType : PrimitiveType.TRIANGLES,
boundingSphere : BoundingSphere.fromPoints(positions),
geometryType : GeometryType.POLYLINES
});
};
return PolylineGeometry;
});