/*global define*/
define([
'../ThirdParty/when',
'./BoundingSphere',
'./Cartesian2',
'./Cartesian3',
'./defaultValue',
'./defined',
'./defineProperties',
'./DeveloperError',
'./IndexDatatype',
'./Intersections2D',
'./Math',
'./OrientedBoundingBox',
'./TaskProcessor',
'./TerrainEncoding',
'./TerrainMesh'
], function(
when,
BoundingSphere,
Cartesian2,
Cartesian3,
defaultValue,
defined,
defineProperties,
DeveloperError,
IndexDatatype,
Intersections2D,
CesiumMath,
OrientedBoundingBox,
TaskProcessor,
TerrainEncoding,
TerrainMesh) {
'use strict';
/**
* Terrain data for a single tile where the terrain data is represented as a quantized mesh. A quantized
* mesh consists of three vertex attributes, longitude, latitude, and height. All attributes are expressed
* as 16-bit values in the range 0 to 32767. Longitude and latitude are zero at the southwest corner
* of the tile and 32767 at the northeast corner. Height is zero at the minimum height in the tile
* and 32767 at the maximum height in the tile.
*
* @alias QuantizedMeshTerrainData
* @constructor
*
* @param {Object} options Object with the following properties:
* @param {Uint16Array} options.quantizedVertices The buffer containing the quantized mesh.
* @param {Uint16Array|Uint32Array} options.indices The indices specifying how the quantized vertices are linked
* together into triangles. Each three indices specifies one triangle.
* @param {Number} options.minimumHeight The minimum terrain height within the tile, in meters above the ellipsoid.
* @param {Number} options.maximumHeight The maximum terrain height within the tile, in meters above the ellipsoid.
* @param {BoundingSphere} options.boundingSphere A sphere bounding all of the vertices in the mesh.
* @param {OrientedBoundingBox} [options.orientedBoundingBox] An OrientedBoundingBox bounding all of the vertices in the mesh.
* @param {Cartesian3} options.horizonOcclusionPoint The horizon occlusion point of the mesh. If this point
* is below the horizon, the entire tile is assumed to be below the horizon as well.
* The point is expressed in ellipsoid-scaled coordinates.
* @param {Number[]} options.westIndices The indices of the vertices on the western edge of the tile.
* @param {Number[]} options.southIndices The indices of the vertices on the southern edge of the tile.
* @param {Number[]} options.eastIndices The indices of the vertices on the eastern edge of the tile.
* @param {Number[]} options.northIndices The indices of the vertices on the northern edge of the tile.
* @param {Number} options.westSkirtHeight The height of the skirt to add on the western edge of the tile.
* @param {Number} options.southSkirtHeight The height of the skirt to add on the southern edge of the tile.
* @param {Number} options.eastSkirtHeight The height of the skirt to add on the eastern edge of the tile.
* @param {Number} options.northSkirtHeight The height of the skirt to add on the northern edge of the tile.
* @param {Number} [options.childTileMask=15] A bit mask indicating which of this tile's four children exist.
* If a child's bit is set, geometry will be requested for that tile as well when it
* is needed. If the bit is cleared, the child tile is not requested and geometry is
* instead upsampled from the parent. The bit values are as follows:
* <table>
* <tr><th>Bit Position</th><th>Bit Value</th><th>Child Tile</th></tr>
* <tr><td>0</td><td>1</td><td>Southwest</td></tr>
* <tr><td>1</td><td>2</td><td>Southeast</td></tr>
* <tr><td>2</td><td>4</td><td>Northwest</td></tr>
* <tr><td>3</td><td>8</td><td>Northeast</td></tr>
* </table>
* @param {Boolean} [options.createdByUpsampling=false] True if this instance was created by upsampling another instance;
* otherwise, false.
* @param {Uint8Array} [options.encodedNormals] The buffer containing per vertex normals, encoded using 'oct' encoding
* @param {Uint8Array} [options.waterMask] The buffer containing the watermask.
*
*
* @example
* var data = new Cesium.QuantizedMeshTerrainData({
* minimumHeight : -100,
* maximumHeight : 2101,
* quantizedVertices : new Uint16Array([// order is SW NW SE NE
* // longitude
* 0, 0, 32767, 32767,
* // latitude
* 0, 32767, 0, 32767,
* // heights
* 16384, 0, 32767, 16384]),
* indices : new Uint16Array([0, 3, 1,
* 0, 2, 3]),
* boundingSphere : new Cesium.BoundingSphere(new Cesium.Cartesian3(1.0, 2.0, 3.0), 10000),
* orientedBoundingBox : new Cesium.OrientedBoundingBox(new Cesium.Cartesian3(1.0, 2.0, 3.0), Cesium.Matrix3.fromRotationX(Cesium.Math.PI, new Cesium.Matrix3())),
* horizonOcclusionPoint : new Cesium.Cartesian3(3.0, 2.0, 1.0),
* westIndices : [0, 1],
* southIndices : [0, 1],
* eastIndices : [2, 3],
* northIndices : [1, 3],
* westSkirtHeight : 1.0,
* southSkirtHeight : 1.0,
* eastSkirtHeight : 1.0,
* northSkirtHeight : 1.0
* });
*
* @see TerrainData
* @see HeightmapTerrainData
*/
function QuantizedMeshTerrainData(options) {
//>>includeStart('debug', pragmas.debug)
if (!defined(options) || !defined(options.quantizedVertices)) {
throw new DeveloperError('options.quantizedVertices is required.');
}
if (!defined(options.indices)) {
throw new DeveloperError('options.indices is required.');
}
if (!defined(options.minimumHeight)) {
throw new DeveloperError('options.minimumHeight is required.');
}
if (!defined(options.maximumHeight)) {
throw new DeveloperError('options.maximumHeight is required.');
}
if (!defined(options.maximumHeight)) {
throw new DeveloperError('options.maximumHeight is required.');
}
if (!defined(options.boundingSphere)) {
throw new DeveloperError('options.boundingSphere is required.');
}
if (!defined(options.horizonOcclusionPoint)) {
throw new DeveloperError('options.horizonOcclusionPoint is required.');
}
if (!defined(options.westIndices)) {
throw new DeveloperError('options.westIndices is required.');
}
if (!defined(options.southIndices)) {
throw new DeveloperError('options.southIndices is required.');
}
if (!defined(options.eastIndices)) {
throw new DeveloperError('options.eastIndices is required.');
}
if (!defined(options.northIndices)) {
throw new DeveloperError('options.northIndices is required.');
}
if (!defined(options.westSkirtHeight)) {
throw new DeveloperError('options.westSkirtHeight is required.');
}
if (!defined(options.southSkirtHeight)) {
throw new DeveloperError('options.southSkirtHeight is required.');
}
if (!defined(options.eastSkirtHeight)) {
throw new DeveloperError('options.eastSkirtHeight is required.');
}
if (!defined(options.northSkirtHeight)) {
throw new DeveloperError('options.northSkirtHeight is required.');
}
//>>includeEnd('debug');
this._quantizedVertices = options.quantizedVertices;
this._encodedNormals = options.encodedNormals;
this._indices = options.indices;
this._minimumHeight = options.minimumHeight;
this._maximumHeight = options.maximumHeight;
this._boundingSphere = options.boundingSphere;
this._orientedBoundingBox = options.orientedBoundingBox;
this._horizonOcclusionPoint = options.horizonOcclusionPoint;
var vertexCount = this._quantizedVertices.length / 3;
var uValues = this._uValues = this._quantizedVertices.subarray(0, vertexCount);
var vValues = this._vValues = this._quantizedVertices.subarray(vertexCount, 2 * vertexCount);
this._heightValues = this._quantizedVertices.subarray(2 * vertexCount, 3 * vertexCount);
// We don't assume that we can count on the edge vertices being sorted by u or v.
function sortByV(a, b) {
return vValues[a] - vValues[b];
}
function sortByU(a, b) {
return uValues[a] - uValues[b];
}
this._westIndices = sortIndicesIfNecessary(options.westIndices, sortByV, vertexCount);
this._southIndices = sortIndicesIfNecessary(options.southIndices, sortByU, vertexCount);
this._eastIndices = sortIndicesIfNecessary(options.eastIndices, sortByV, vertexCount);
this._northIndices = sortIndicesIfNecessary(options.northIndices, sortByU, vertexCount);
this._westSkirtHeight = options.westSkirtHeight;
this._southSkirtHeight = options.southSkirtHeight;
this._eastSkirtHeight = options.eastSkirtHeight;
this._northSkirtHeight = options.northSkirtHeight;
this._childTileMask = defaultValue(options.childTileMask, 15);
this._createdByUpsampling = defaultValue(options.createdByUpsampling, false);
this._waterMask = options.waterMask;
this._mesh = undefined;
}
defineProperties(QuantizedMeshTerrainData.prototype, {
/**
* The water mask included in this terrain data, if any. A water mask is a rectangular
* Uint8Array or image where a value of 255 indicates water and a value of 0 indicates land.
* Values in between 0 and 255 are allowed as well to smoothly blend between land and water.
* @memberof QuantizedMeshTerrainData.prototype
* @type {Uint8Array|Image|Canvas}
*/
waterMask : {
get : function() {
return this._waterMask;
}
}
});
var arrayScratch = [];
function sortIndicesIfNecessary(indices, sortFunction, vertexCount) {
arrayScratch.length = indices.length;
var needsSort = false;
for (var i = 0, len = indices.length; i < len; ++i) {
arrayScratch[i] = indices[i];
needsSort = needsSort || (i > 0 && sortFunction(indices[i - 1], indices[i]) > 0);
}
if (needsSort) {
arrayScratch.sort(sortFunction);
return IndexDatatype.createTypedArray(vertexCount, arrayScratch);
} else {
return indices;
}
}
var createMeshTaskProcessor = new TaskProcessor('createVerticesFromQuantizedTerrainMesh');
/**
* Creates a {@link TerrainMesh} from this terrain data.
*
* @private
*
* @param {TilingScheme} tilingScheme The tiling scheme to which this tile belongs.
* @param {Number} x The X coordinate of the tile for which to create the terrain data.
* @param {Number} y The Y coordinate of the tile for which to create the terrain data.
* @param {Number} level The level of the tile for which to create the terrain data.
* @param {Number} [exaggeration=1.0] The scale used to exaggerate the terrain.
* @returns {Promise.<TerrainMesh>|undefined} A promise for the terrain mesh, or undefined if too many
* asynchronous mesh creations are already in progress and the operation should
* be retried later.
*/
QuantizedMeshTerrainData.prototype.createMesh = function(tilingScheme, x, y, level, exaggeration) {
//>>includeStart('debug', pragmas.debug);
if (!defined(tilingScheme)) {
throw new DeveloperError('tilingScheme is required.');
}
if (!defined(x)) {
throw new DeveloperError('x is required.');
}
if (!defined(y)) {
throw new DeveloperError('y is required.');
}
if (!defined(level)) {
throw new DeveloperError('level is required.');
}
//>>includeEnd('debug');
var ellipsoid = tilingScheme.ellipsoid;
var rectangle = tilingScheme.tileXYToRectangle(x, y, level);
exaggeration = defaultValue(exaggeration, 1.0);
var verticesPromise = createMeshTaskProcessor.scheduleTask({
minimumHeight : this._minimumHeight,
maximumHeight : this._maximumHeight,
quantizedVertices : this._quantizedVertices,
octEncodedNormals : this._encodedNormals,
includeWebMercatorT : true,
indices : this._indices,
westIndices : this._westIndices,
southIndices : this._southIndices,
eastIndices : this._eastIndices,
northIndices : this._northIndices,
westSkirtHeight : this._westSkirtHeight,
southSkirtHeight : this._southSkirtHeight,
eastSkirtHeight : this._eastSkirtHeight,
northSkirtHeight : this._northSkirtHeight,
rectangle : rectangle,
relativeToCenter : this._boundingSphere.center,
ellipsoid : ellipsoid,
exaggeration : exaggeration
});
if (!defined(verticesPromise)) {
// Postponed
return undefined;
}
var that = this;
return when(verticesPromise, function(result) {
var vertexCount = that._quantizedVertices.length / 3;
vertexCount += that._westIndices.length + that._southIndices.length + that._eastIndices.length + that._northIndices.length;
var indicesTypedArray = IndexDatatype.createTypedArray(vertexCount, result.indices);
var vertices = new Float32Array(result.vertices);
var rtc = result.center;
var minimumHeight = result.minimumHeight;
var maximumHeight = result.maximumHeight;
var boundingSphere = defaultValue(result.boundingSphere, that._boundingSphere);
var obb = defaultValue(result.orientedBoundingBox, that._orientedBoundingBox);
var occlusionPoint = that._horizonOcclusionPoint;
var stride = result.vertexStride;
var terrainEncoding = TerrainEncoding.clone(result.encoding);
that._skirtIndex = result.skirtIndex;
that._vertexCountWithoutSkirts = that._quantizedVertices.length / 3;
that._mesh = new TerrainMesh(
rtc,
vertices,
indicesTypedArray,
minimumHeight,
maximumHeight,
boundingSphere,
occlusionPoint,
stride,
obb,
terrainEncoding,
exaggeration);
// Free memory received from server after mesh is created.
that._quantizedVertices = undefined;
that._encodedNormals = undefined;
that._indices = undefined;
that._uValues = undefined;
that._vValues = undefined;
that._heightValues = undefined;
that._westIndices = undefined;
that._southIndices = undefined;
that._eastIndices = undefined;
that._northIndices = undefined;
return that._mesh;
});
};
var upsampleTaskProcessor = new TaskProcessor('upsampleQuantizedTerrainMesh');
/**
* Upsamples this terrain data for use by a descendant tile. The resulting instance will contain a subset of the
* vertices in this instance, interpolated if necessary.
*
* @param {TilingScheme} tilingScheme The tiling scheme of this terrain data.
* @param {Number} thisX The X coordinate of this tile in the tiling scheme.
* @param {Number} thisY The Y coordinate of this tile in the tiling scheme.
* @param {Number} thisLevel The level of this tile in the tiling scheme.
* @param {Number} descendantX The X coordinate within the tiling scheme of the descendant tile for which we are upsampling.
* @param {Number} descendantY The Y coordinate within the tiling scheme of the descendant tile for which we are upsampling.
* @param {Number} descendantLevel The level within the tiling scheme of the descendant tile for which we are upsampling.
* @returns {Promise.<QuantizedMeshTerrainData>|undefined} A promise for upsampled heightmap terrain data for the descendant tile,
* or undefined if too many asynchronous upsample operations are in progress and the request has been
* deferred.
*/
QuantizedMeshTerrainData.prototype.upsample = function(tilingScheme, thisX, thisY, thisLevel, descendantX, descendantY, descendantLevel) {
//>>includeStart('debug', pragmas.debug);
if (!defined(tilingScheme)) {
throw new DeveloperError('tilingScheme is required.');
}
if (!defined(thisX)) {
throw new DeveloperError('thisX is required.');
}
if (!defined(thisY)) {
throw new DeveloperError('thisY is required.');
}
if (!defined(thisLevel)) {
throw new DeveloperError('thisLevel is required.');
}
if (!defined(descendantX)) {
throw new DeveloperError('descendantX is required.');
}
if (!defined(descendantY)) {
throw new DeveloperError('descendantY is required.');
}
if (!defined(descendantLevel)) {
throw new DeveloperError('descendantLevel is required.');
}
var levelDifference = descendantLevel - thisLevel;
if (levelDifference > 1) {
throw new DeveloperError('Upsampling through more than one level at a time is not currently supported.');
}
//>>includeEnd('debug');
var mesh = this._mesh;
if (!defined(this._mesh)) {
return undefined;
}
var isEastChild = thisX * 2 !== descendantX;
var isNorthChild = thisY * 2 === descendantY;
var ellipsoid = tilingScheme.ellipsoid;
var childRectangle = tilingScheme.tileXYToRectangle(descendantX, descendantY, descendantLevel);
var upsamplePromise = upsampleTaskProcessor.scheduleTask({
vertices : mesh.vertices,
vertexCountWithoutSkirts : this._vertexCountWithoutSkirts,
indices : mesh.indices,
skirtIndex : this._skirtIndex,
encoding : mesh.encoding,
minimumHeight : this._minimumHeight,
maximumHeight : this._maximumHeight,
isEastChild : isEastChild,
isNorthChild : isNorthChild,
childRectangle : childRectangle,
ellipsoid : ellipsoid,
exaggeration : mesh.exaggeration
});
if (!defined(upsamplePromise)) {
// Postponed
return undefined;
}
var shortestSkirt = Math.min(this._westSkirtHeight, this._eastSkirtHeight);
shortestSkirt = Math.min(shortestSkirt, this._southSkirtHeight);
shortestSkirt = Math.min(shortestSkirt, this._northSkirtHeight);
var westSkirtHeight = isEastChild ? (shortestSkirt * 0.5) : this._westSkirtHeight;
var southSkirtHeight = isNorthChild ? (shortestSkirt * 0.5) : this._southSkirtHeight;
var eastSkirtHeight = isEastChild ? this._eastSkirtHeight : (shortestSkirt * 0.5);
var northSkirtHeight = isNorthChild ? this._northSkirtHeight : (shortestSkirt * 0.5);
return when(upsamplePromise, function(result) {
var quantizedVertices = new Uint16Array(result.vertices);
var indicesTypedArray = IndexDatatype.createTypedArray(quantizedVertices.length / 3, result.indices);
var encodedNormals;
if (defined(result.encodedNormals)) {
encodedNormals = new Uint8Array(result.encodedNormals);
}
return new QuantizedMeshTerrainData({
quantizedVertices : quantizedVertices,
indices : indicesTypedArray,
encodedNormals : encodedNormals,
minimumHeight : result.minimumHeight,
maximumHeight : result.maximumHeight,
boundingSphere : BoundingSphere.clone(result.boundingSphere),
orientedBoundingBox : OrientedBoundingBox.clone(result.orientedBoundingBox),
horizonOcclusionPoint : Cartesian3.clone(result.horizonOcclusionPoint),
westIndices : result.westIndices,
southIndices : result.southIndices,
eastIndices : result.eastIndices,
northIndices : result.northIndices,
westSkirtHeight : westSkirtHeight,
southSkirtHeight : southSkirtHeight,
eastSkirtHeight : eastSkirtHeight,
northSkirtHeight : northSkirtHeight,
childTileMask : 0,
createdByUpsampling : true
});
});
};
var maxShort = 32767;
var barycentricCoordinateScratch = new Cartesian3();
/**
* Computes the terrain height at a specified longitude and latitude.
*
* @param {Rectangle} rectangle The rectangle covered by this terrain data.
* @param {Number} longitude The longitude in radians.
* @param {Number} latitude The latitude in radians.
* @returns {Number} The terrain height at the specified position. The position is clamped to
* the rectangle, so expect incorrect results for positions far outside the rectangle.
*/
QuantizedMeshTerrainData.prototype.interpolateHeight = function(rectangle, longitude, latitude) {
var u = CesiumMath.clamp((longitude - rectangle.west) / rectangle.width, 0.0, 1.0);
u *= maxShort;
var v = CesiumMath.clamp((latitude - rectangle.south) / rectangle.height, 0.0, 1.0);
v *= maxShort;
if (!defined(this._mesh)) {
return interpolateHeight(this, u, v);
}
interpolateMeshHeight(this, u, v);
};
var texCoordScratch0 = new Cartesian2();
var texCoordScratch1 = new Cartesian2();
var texCoordScratch2 = new Cartesian2();
function interpolateMeshHeight(terrainData, u, v) {
var mesh = terrainData._mesh;
var vertices = mesh.vertices;
var encoding = mesh.encoding;
var indices = mesh.indices;
for (var i = 0, len = indices.length; i < len; i += 3) {
var i0 = indices[i];
var i1 = indices[i + 1];
var i2 = indices[i + 2];
var uv0 = encoding.decodeTextureCoordinates(vertices, i0, texCoordScratch0);
var uv1 = encoding.decodeTextureCoordinates(vertices, i1, texCoordScratch1);
var uv2 = encoding.decodeTextureCoordinates(vertices, i2, texCoordScratch2);
var barycentric = Intersections2D.computeBarycentricCoordinates(u, v, uv0.x, uv0.y, uv1.x, uv1.y, uv2.x, uv2.y, barycentricCoordinateScratch);
if (barycentric.x >= -1e-15 && barycentric.y >= -1e-15 && barycentric.z >= -1e-15) {
var h0 = encoding.decodeHeight(vertices, i0);
var h1 = encoding.decodeHeight(vertices, i1);
var h2 = encoding.decodeHeight(vertices, i2);
return barycentric.x * h0 + barycentric.y * h1 + barycentric.z * h2;
}
}
// Position does not lie in any triangle in this mesh.
return undefined;
}
function interpolateHeight(terrainData, u, v) {
var uBuffer = terrainData._uValues;
var vBuffer = terrainData._vValues;
var heightBuffer = terrainData._heightValues;
var indices = terrainData._indices;
for (var i = 0, len = indices.length; i < len; i += 3) {
var i0 = indices[i];
var i1 = indices[i + 1];
var i2 = indices[i + 2];
var u0 = uBuffer[i0];
var u1 = uBuffer[i1];
var u2 = uBuffer[i2];
var v0 = vBuffer[i0];
var v1 = vBuffer[i1];
var v2 = vBuffer[i2];
var barycentric = Intersections2D.computeBarycentricCoordinates(u, v, u0, v0, u1, v1, u2, v2, barycentricCoordinateScratch);
if (barycentric.x >= -1e-15 && barycentric.y >= -1e-15 && barycentric.z >= -1e-15) {
var quantizedHeight = barycentric.x * heightBuffer[i0] +
barycentric.y * heightBuffer[i1] +
barycentric.z * heightBuffer[i2];
return CesiumMath.lerp(terrainData._minimumHeight, terrainData._maximumHeight, quantizedHeight / maxShort);
}
}
// Position does not lie in any triangle in this mesh.
return undefined;
}
/**
* Determines if a given child tile is available, based on the
* {@link HeightmapTerrainData.childTileMask}. The given child tile coordinates are assumed
* to be one of the four children of this tile. If non-child tile coordinates are
* given, the availability of the southeast child tile is returned.
*
* @param {Number} thisX The tile X coordinate of this (the parent) tile.
* @param {Number} thisY The tile Y coordinate of this (the parent) tile.
* @param {Number} childX The tile X coordinate of the child tile to check for availability.
* @param {Number} childY The tile Y coordinate of the child tile to check for availability.
* @returns {Boolean} True if the child tile is available; otherwise, false.
*/
QuantizedMeshTerrainData.prototype.isChildAvailable = function(thisX, thisY, childX, childY) {
//>>includeStart('debug', pragmas.debug);
if (!defined(thisX)) {
throw new DeveloperError('thisX is required.');
}
if (!defined(thisY)) {
throw new DeveloperError('thisY is required.');
}
if (!defined(childX)) {
throw new DeveloperError('childX is required.');
}
if (!defined(childY)) {
throw new DeveloperError('childY is required.');
}
//>>includeEnd('debug');
var bitNumber = 2; // northwest child
if (childX !== thisX * 2) {
++bitNumber; // east child
}
if (childY !== thisY * 2) {
bitNumber -= 2; // south child
}
return (this._childTileMask & (1 << bitNumber)) !== 0;
};
/**
* Gets a value indicating whether or not this terrain data was created by upsampling lower resolution
* terrain data. If this value is false, the data was obtained from some other source, such
* as by downloading it from a remote server. This method should return true for instances
* returned from a call to {@link HeightmapTerrainData#upsample}.
*
* @returns {Boolean} True if this instance was created by upsampling; otherwise, false.
*/
QuantizedMeshTerrainData.prototype.wasCreatedByUpsampling = function() {
return this._createdByUpsampling;
};
return QuantizedMeshTerrainData;
});