
	

	

	

	

	

Reference Architecture:
Service Discovery and Load
Balancing with Docker Universal
Control Plane (UCP)
Version	1.0	
February	2016	
	

	 	

	

	REFERENCE ARCHITECUTRE | SERVICE DISCOVERY AND LOAD BALANCING WITH UCP

REFERENCE ARCHITECTURE / 2

Introduction

When developing applications, developers focus on functionality, speed, robustness, and quality of the
application itself more than the ongoing operations. However, the shift to DevOps in application
deployment practices has forced developers to own not only the application's development but also its
deployment operations (developers are no longer pager-duty-free!). This shift also encouraged the
operations teams to provide a common, scalable, and secure infrastructure that multiple developer
teams can use to build, test, stage and deploy their applications.

With this shift, DevOps teams want to ensure that their applications are scalable. This means that
these applications need to be broken up into, and advertised as smaller, decoupled microservices that
can be easily scaled across large compute clusters. The microservices approach emphasized two key
architectural considerations: service discovery and load balancing. This means that as developers
build their applications to scale, they need to consider and design how each component (service) is
being discovered by other services within or from outside the cluster. Additionally, as these services
scale horizontally across the cluster, they should be equally utilized for maximum load distribution.

Docker Universal Control Plane (UCP) was built with this operational shift in mind. Docker UCP is
available as part of Docker Datacenter to address both the developers’ requirement for a seamless
path from development to production and IT Operations’ requirement for building a secure and
scalable Docker infrastructure. Docker Datacenter includes UCP, Trusted Registry and Commercially
Supported Docker Engines. As an integrated platform, Docker Datacenter empowers application
teams to build a Containers as a Service (CaaS) environment either on-premises or in the cloud

This reference architecture is designed to provide guidance towards a supported high availability
configuration of UCP with dynamic service discovery and load balancing. Docker provides official
support for Docker products as governed by the Docker Datacenter end-user service agreement. For
this reference architecture, Docker will provide support for Interlock (per the service levels provided in
the customer contract for Docker Datacenter Subscription) as well as best effort support for 3rd party
software, although official support for such software must be obtained through those 3rd party
vendors.

	

	 	

	

	REFERENCE ARCHITECUTRE | SERVICE DISCOVERY AND LOAD BALANCING WITH UCP

REFERENCE ARCHITECTURE / 3

What you will learn
	
In this reference architecture, you will learn how to setup a highly available Universal Control Plane
(UCP) cluster to enable dynamic service discovery and load balancing. We will use a sample
Dockerized application (Voting App) throughout this paper as a reference application for the exercise.
The sample application is composed of five (5) microservices as described below.

The end goal is to:

• Deploy the application on UCP
• Ensure that all of its services are discoverable within the cluster
• Ensure two of its services are accessible and load-balanced from outside the cluster with pre-

determined DNS names

Sample Application Architecture:

• voting-app: A Python webapp which lets you vote between two options. (External DNS:
vote.myenterprise.com)

• result-app: A Node.js webapp which shows the results of the voting in real time (External
DNS: results.myenterprise.com)

• redis: A Redis queue which collects new votes
• worker: A Java worker which consumes votes and stores them in a database.
• db: A Postgres database backed by a Docker volume

Sample Application Docker Compose File

version: “2”

Services:
 voting-app:
 image: docker/example-voting-app-voting-app
 ports:
 - "80"
 networks:
 - voteapp
 result-app:
 image: docker/example-voting-app-result-app
 ports:
 - "80"
 networks:
 - voteapp
 worker:
 image: docker/example-voting-app-worker
 networks:
 - voteapp
 redis:
 image: redis
 ports:

	 	

	

	REFERENCE ARCHITECUTRE | SERVICE DISCOVERY AND LOAD BALANCING WITH UCP

REFERENCE ARCHITECTURE / 4

 - "6379"
 networks:
 - voteapp
 container_name: redis
 db:
 image: postgres:9.4
 volumes:
 - "db-data:/var/lib/postgresql/data"
 networks:
 - voteapp
 container_name: db
 volumes:
 db-data:

 networks:
 voteapp

Assumptions

This reference architecture assumes that the reader already has a working understanding of the
Docker Datacenter, in particular the following components: Docker Universal Control Plane, Swarm,
and Compose.

If you are not familiar, please refer to the following resources to gain a basic understanding of:

• Docker Universal Control Plane at docs.docker.com/ucp
• Docker Swarm at docs.docker.com/swarm
• Docker Compose at docs.docker.com/compose
• Common load balancing solutions such as HAProxy or NGINX

o www.haproxy.org
o www.nginx.com

Requirements

There are software version requirements for this reference architecture. Other variations have not
been tested or validated. For more details on software compatibility and interoperability please go
to Compatibility Matrix page here www.docker.com/compatibility-maintenance.

• Docker UCP 1.0.0
• Docker Compose 1.6.1
• Commercially supported Docker Engine 1.10

Prerequisites

For this reference architecture, you will need the following environment set up. You do not need to
have UCP installed. You will install the environment at a later step, but can prepare by reviewing the

	 	

	

	REFERENCE ARCHITECUTRE | SERVICE DISCOVERY AND LOAD BALANCING WITH UCP

REFERENCE ARCHITECTURE / 5

installation requirements here docs.docker.com/ucp/plan-production-install/.

• At least 3 UCP Controllers Nodes.
• At least 3 UCP Cluster Nodes.
• A designated DNS record for UCP (e.g. ucp.myenterprise.com).
• Unrestricted network between the nodes.
• Network reachability to the UCP controller nodes on TCP port 80/443.

Note: You do not need to have UCP installed. You will install it at a later step.

Design Considerations
There are multiple considerations for designing production-ready infrastructure using Docker
Datacenter. From an operational point of view, it is important to ensure that UCP itself is highly
available so that any failure in one or more UCP controllers wouldn't result in an inability to access the
UCP controller. Additionally, providing a scalable, secure, and stateless load-balancing service
for all applications is important so that as the application scales, load balancing can dynamically
ensure that traffic is equally distributed across all of the containers providing these services.

From a developer's point of view, it is important to ensure that any design should integrate with the
established developer workflow. For example, if developers use Docker Compose to build their
applications locally during development, the new design should ensure Compose files can be used to
deploy to production. Either directly by the developers or through a coordinated sign-off process to the
deployment operations team. Additionally, it is important to ensure that each service deployed on
Docker Datacenter is easily discoverable and reachable by other services that are part of the same
app, regardless where the containers providing these services are deployed in the cluster. This means
that developers can assume that moving their apps from local development to production cluster will
not break the application. Finally, it is crucial to ensure that the developers' apps are easily
discoverable and accessible from outside the cluster regardless which cluster or cluster node they end
up being deployed to. This means that as the app moves from one cluster to another, developers
should not worry about losing access to their applications.

In summary, there are three key design considerations that need to be addressed to ensure the
developers and IT operations teams requirements are met:

• UCP High-Availability
• Internal Service Discovery + Load Distribution
• External Service Discovery + Load Distribution

	 	

	

	REFERENCE ARCHITECUTRE | SERVICE DISCOVERY AND LOAD BALANCING WITH UCP

REFERENCE ARCHITECTURE / 6

Solution Overview
In the following sections, we will go through each of the three design considerations and provide a
solution to address them. We will start by building a highly available UCP cluster that can withstand
controller failure without impacting deployment operations. We will then focus on addressing the
concern of intra cluster services discovery. Finally, we will go through designing a highly scalable
load-balancing infrastructure that uses industry standards.

1. UCP High-Availability
Docker UCP supports high availability (HA) by replicating the UCP controller along with the underlying
Swarm manager and key-value store containers within your cluster. When you deploy UCP, you start
by deploying the first UCP controller followed by the replicas. Functionally, all controllers are the
same. HA requires at least three (3) controllers, a primary and two replicas , to be configured on three
separate nodes. It is not recommended to run a cluster with only the primary controller and a single
replica as this results in a split-brain scenario (e.g. each controller thinks it is the master controller in
the cluster). Additionally, HA mode requires an odd number of controllers to achieve simple majority
(quorum).

Failure tolerance for UCP HA deployments can be summarized as follows:

Number of Deployed Controllers Fault Tolerance
1 0
3 1
5 2
7 3

UCP controllers are stateless by design. All UCP controllers accept requests, and then forward them
to the underlying Swarm Manager. Any controller failure when UCP is deployed in HA will not have
any impact on your UCP cluster, both from UCP web access (UI) or Docker client requests using the
CLI. However, if you're statically mapping a DNS record to a primary UCP controller's IP address and
that controller goes down, you will not be able to reach UCP. For that reason, it is recommended to
deploy a UCP controller load balancer. An upstream load balancer can distribute all UCP requests to
all three controllers behind it. As a sample reference, a HAProxy load balancer config file is provided
below. Similarly, if you're deploying UCP in a public cloud, you can create a load balancer directly
from the cloud provider (For example, AWS ELB or Azure Load Balancer)

	 	

	

	REFERENCE ARCHITECUTRE | SERVICE DISCOVERY AND LOAD BALANCING WITH UCP

REFERENCE ARCHITECTURE / 7

 global

 maxconn 256
defaults
 mode tcp
 timeout connect 5000ms
 timeout client 50000ms
 timeout server 50000ms

frontend public
 option tcplog
 bind *:80
 redirect scheme https code 301 if !{ ssl_fc }
 bind *:443
 default_backend servers

backend servers
 mode tcp
 balance roundrobin
 server ucp1 10.10.10.11:443 check
 server ucp2 10.10.10.12.443 check
 server ucp3 10.10.10.13.443 check

Here are some recommended UCP controller and load balancer configurations:

• Health Checks: The load balancer can use UCP's API endpoint /_ping to ensure that each
of the controllers is healthy. A 200 OK response means that the controller is healthy and it
can receive traffic.

• Listeners: The load balancer should be configured to load-balance using TCP port 80 and
443. The load balancer should not terminate/reestablish HTTPS connections due to mutual
TLS connection requirement in order to use Docker Client with UCP.

• DNS: a DNS record should be mapped to the load balancer itself (e.g. VIP) and not to any
individual controller.

• IPs: The load balancer can load balance to the controller's private or public IPs as long as the
load balancer can reach each of the controllers.

• SSL Certificates: When you install the UCP controllers, ensure that you use the Fully
Qualified Domain Name (FQDN) of the UCP when asked for additional Subject Alternative
Names(SAN). You need to do this on ALL UCP controllers (including the replicas). The SANs
are used by the UCP Certificate Authority to sign the SSL certificates.

Note: If you would like to use your own CA to sign UCP's certificate, please follow the following
directions directions at docs.docker.com/ucp/production-install/#step-5-customize-the-ca-used-
optional.

Should any controller fail, the UCP Controller load balancer will ensure that UCP can be reached and
all Docker deployment workflows are run without impact.

Now that you have the full requirements for UCP HA deployment, you can easily deploy the UCP

	 	

	

	REFERENCE ARCHITECUTRE | SERVICE DISCOVERY AND LOAD BALANCING WITH UCP

REFERENCE ARCHITECTURE / 8

controllers and nodes by following these instructions docs.docker.com/ucp/production-install/.

Once you install and configure the UCP controllers, download the UCP Client Bundle to directly use
your local Docker client to deploy containers on UCP. Instructions to obtain the Client Bundle are here
docs.docker.com/ucp/deploy-application/#step-2-get-the-client-bundle-and-configure-a-shell.

2. Internal Service Discovery and Load Distribution
In order for different microservice containers to communicate, they must first discover each other. The
introduction of multi-host networking in Docker 1.9 enabled multiple services belonging to a single
application to be connected via an Overlay Network that spans multiple nodes. More information on
Overlay Networks located docs.docker.com/engine/userguide/networking/get-started-overlay/. Docker
1.10 added an embedded DNS-based for hostname lookups for a more reliable and scalable service
discovery.

Containers deployed using Docker 1.10 can now use DNS to resolve the IP of other containers on the
same network. This behavior works out of the box for user-defined bridge and overlay networks.

Docker 1.10 also introduced the concept of network alias. A network alias abstracts multiple
containers under a single alias. This means that scaled services (e.g. docker-compose scale
service=number) can be grouped under and resolved by a single alias. Docker will resolve the alias
to a healthy container that belongs to that alias. This is extremely helpful for stateless services where
any container can be used to provide a service.

Example: In our sample Voting App, the Java worker service can belong to the alias workers. If
additional workers are needed, you can scale the worker service using Compose. All
the worker services can belong to a single alias called workers. If other services need to connect
with any of these services, Docker will resolve the workers alias to a healthy container. We can add
network aliases for the worker service in the Compose file as follows:

<snippet>

 worker:
 image: docker/example-voting-app-worker
 networks:
 voteapp:
 aliases:
 - workers

<snippet>

We can now deploy the app on UCP using Docker Compose. The worker service is then scaled
such that there are two containers running (worker_1 and worker_2). Other services can reach
either worker containers by using the container name worker_1 or the alias name (workers). In the
case that worker_1 goes down, Docker will automatically resolve the workers alias to worker_2.

	 	

	

	REFERENCE ARCHITECUTRE | SERVICE DISCOVERY AND LOAD BALANCING WITH UCP

REFERENCE ARCHITECTURE / 9

	

3. External Service Discovery + Load Distribution
Some services are designed to be accessible from outside the UCP cluster (typically by a DNS name)
either as services that need to be accessed by other services in a different cluster or by external
public users/services. To access these services, you typically need to create a DNS record for each
service, and map it to the exact node that that service is running on. If you also need to load balance
across multiple containers, you need to add a load balancer and reconfigure it every time a container
comes up/goes down. This process is tedious and not scalable.

An easier, more scalable, and automated solution to enable external service discovery and load
balancing is to use an event-driven service registrator that automatically updates a load-balancer's
config as containers go up or down in your UCP cluster. This can be achieved by combining Interlock
(github.com/ehazlett/interlock) with your preferred load balancer HAProxy or NGINX.

Interlock is a containerized, event-driven tool that connects to the UCP controllers and watches for
events. In this case, events can be containers being spun up or going down. Interlock also looks for
certain metadata that these containers have. These can be hostnames or labels that you configure the
container with. It then uses the metadata to register/de-register these containers to a load balancing
backend. The load balancer uses updated backend configs to direct incoming requests to healthy
containers. Both Interlock and the load balancer containers are stateless, and hence can be scaled
horizontally across multiple nodes to provide a highly available load balancing services for all
deployed applications.

	 	

	

	REFERENCE ARCHITECUTRE | SERVICE DISCOVERY AND LOAD BALANCING WITH UCP

REFERENCE ARCHITECTURE / 10

How it Works:
First, you would need to configure Interlock. Interlock uses UCP's key-value store to store its configs.
This enables a single update to the configuration to be used by multiple Interlock/LB instances (that is
if you decide to deploy multiple instances of Interlock+lb).

Second, you would need to deploy Interlock and the load balancer containers on a regular UCP
node(s). It is recommended to dedicate some nodes in a UCP cluster to provide the external
connectivity and load balancing service. These nodes need to have externally routable IP addresses
reachable by the services that need to access your application. The other nodes running your services
do not have to have externally routable IP addresses. In this example we will one of the three UCP
nodes (we will call it lb) to deploy Interlock and the load balancer using Docker Compose.

Third, you would need to create a DNS record that represents your application's domain name and
map it to the IP address of lb.

Finally, you need to add specific metadata in the form of container labels when deploying your
application. The labels are then used by Interlock to register the container against the load balancer.

The above steps provide the necessary service registration and load balancing solution that can be
used by any developer when deploying their application on UCP. Follow the below step-by-step
procedures to configure your UCP cluster based on your preferred industry-standard load balancing
backend (3A for NGINX or 3B for HAProxy). The diagram below shows the load balancing solution.

	 	

	

	REFERENCE ARCHITECUTRE | SERVICE DISCOVERY AND LOAD BALANCING WITH UCP

REFERENCE ARCHITECTURE / 11

3A. Interlock and NGINX/NGINX+
The following steps provide a guideline to configuring the load-balancing solution on a dedicated UCP
node using Interlock + NGINX/NGINX+:

1. On any UCP Controller nodes, update Interlock configs using a single curl command against UCP

key/value store.

Note: We are using a sample NGINX configuration, full documentation for NGINX options can
be found here github.com/ehazlett/interlock/blob/master/docs/configuration.md. You can adjust
NGINX configuration based on your requirements.

Note: You will notice that we're using the FQDN of UCP to load Interlock's configs to the K/V store.
This will ensure that Interlock can reach and listen to events from any controller. However, Interlock
needs to access the UCP on port 2376 (default port of the Swarm Manager container). Therefore, you
need to ensure that the UCP Controller Load balancer will allow traffic to that port to reach the
controllers. Alternatively, you can configure an internal UCP load balancer that doesn't restrict any
ports to pass to the UCP controllers.

Note: You need to substitute $UCP_FQDN with your UCP’s FQDN (e.g. ucp.myenterprise.com)

$	docker	exec	-ti	ucp-kv	curl	\	
			--cacert	/etc/docker/ssl/ca.pem	\	
			--cert	/etc/docker/ssl/cert.pem	\	
			--key	/etc/docker/ssl/key.pem	\	
			https://$UCP_FQDN:12379/v2/keys/interlock/v1/config	-XPUT	-d	
value='listenAddr	=	":8080"	dockerURL	=	"tcp://$UCP_FQDN:2376"	
	tlsCaCert	=	"/certs/ca.pem"	
	tlsCert	=	"/certs/cert.pem"	
	tlsKey	=	"/certs/key.pem"	
	
[[Extensions]]	
			Name	=	"nginx"	
			ConfigPath	=	"/etc/conf/nginx.conf"	
			PidPath	=	"/etc/conf/nginx.pid"	
			BackendOverrideAddress	=	""	
			ConnectTimeout	=	5000	
			ServerTimeout	=	10000	
			ClientTimeout	=	10000	
			MaxConn	=	1024	
			Port	=	80	
			SyslogAddr	=	""	
			NginxPlusEnabled	=	false	
			AdminUser	=	"admin"	
			AdminPass	=	""	
			SSLCertPath	=	""	
			SSLCert	=	""	

	 	

	

	REFERENCE ARCHITECUTRE | SERVICE DISCOVERY AND LOAD BALANCING WITH UCP

REFERENCE ARCHITECTURE / 12

			SSLPort	=	443	
			SSLOpts	=	""	
			User	=	"www-data"	
			WorkerProcesses	=	2	
			RLimitNoFile	=	65535	
			ProxyConnectTimeout	=	600	
			ProxySendTimeout	=	600	
			ProxyReadTimeout	=	600	
			SendTimeout	=	600	
			SSLCiphers	=	"HIGH:!aNULL:!MD5"	
			SSLProtocols	=	"SSLv3	TLSv1	TLSv1.1	TLSv1.2"'

2. On the dedicated UCP node (lb), install Docker Compose docs.docker.com/compose/install/.

Then ensure that docker-compose is installed:

$ docker-compose version
docker-compose version 1.6.2, build 4d72027
docker-py version: 1.7.2
CPython version: 2.7.6
OpenSSL version: OpenSSL 1.0.1f 6 Jan 2014

3. On the dedicated UCP node (lb), clone the following github.com/nicolaka/interlock-lbs. Note: In

this example, we're using the standard NGINX Docker image. However, you can use your own
NGINX+ image. All you need to do is change the image for the nginxservice in the Docker
Compose file and repeat step #1 with the NginxPlusEnabled = true option.

$ git clone https://github.com/nicolaka/interlock-lbs

4. On the dedicated UCP node (lb), export an environment variable called CONTROLLER_IP. This

variable should be the FQDN of UCP Controller.

$ export CONTROLLER_IP=ucp.myenterprise.com

5. On the dedicated UCP node (lb), deploy Interlock+NGINX using the following docker-compose

command:

 $ cd ./interlock-lbs/interlock-nginx
 interlock-lbs/interlock-nginx$ docker-compose up -d

	

	

	 	

	

	REFERENCE ARCHITECUTRE | SERVICE DISCOVERY AND LOAD BALANCING WITH UCP

REFERENCE ARCHITECTURE / 13

6. Confirm that Interlock is connected to the Swarm event stream:

/interlock-lbs/interlock-nginx$ docker-compose logs
Attaching to interlocknginx_nginx_1, interlocknginx_interlock_1
interlock_1 | time="2016-02-21T04:12:28Z" level=info msg="interlock 1.0.0
(57c4f86)"
interlock_1 | time="2016-02-21T04:12:28Z" level=debug msg="using kv:
addr=etcd://ucp.myenterprise.com:12379"
interlock_1 | time="2016-02-21T04:12:28Z" level=debug msg="Trusting certs with
subjects: [0\x1e1\x1c0\x1a\x06\x03U\x04\x03\x13\x13UCP Cluster Root CA]"
interlock_1 | time="2016-02-21T04:12:28Z" level=debug msg="configuring TLS for
KV"
interlock_1 | time="2016-02-21T04:12:29Z" level=debug msg="using tls for
communication with docker"
interlock_1 | time="2016-02-21T04:12:29Z" level=debug msg="docker client:
url=tcp://10.0.20.65:3376"
interlock_1 | time="2016-02-21T04:12:29Z" level=debug msg="loading extension:
name=nginx configpath=/etc/conf/nginx.conf"
interlock_1 | time="2016-02-21T04:12:29Z" level=debug msg="starting event
handling"
interlock_1 | time="2016-02-21T04:12:29Z" level=debug msg="checking to reload"
interlock_1 | time="2016-02-21T04:12:29Z" level=debug msg=reloading
interlock_1 | time="2016-02-21T04:12:29Z" level=debug msg="updating load
balancers"
interlock_1 | time="2016-02-21T04:12:29Z" level=debug msg="event received: type=
id="
interlock_1 | time="2016-02-21T04:12:29Z" level=info msg="configuration updated"
ext=nginx
interlock_1 | time="2016-02-21T04:12:29Z" level=debug msg="reload duration:
505.20ms"
interlock_1 | time="2016-02-21T04:12:29Z" level=debug msg="event received: type=
id="
interlock_1 | time="2016-02-21T04:12:29Z" level=debug msg="event received: type=
id="
interlock_1 | time="2016-02-21T04:12:29Z" level=debug msg="event received:
type=start id=0964bc585e971c43b69d08b440d2175d37b9c533b7e48026044a5694a4abeb5a"
interlock_1 | time="2016-02-21T04:12:29Z" level=debug msg="inspecting container:
id=0964bc585e971c43b69d08b440d2175d37b9c533b7e48026044a5694a4abeb5a"
interlock_1 | time="2016-02-21T04:12:29Z" level=debug msg="checking container
labels: id=0964bc585e971c43b69d08b440d2175d37b9c533b7e48026044a5694a4abeb5a"
interlock_1 | time="2016-02-21T04:12:29Z" level=debug msg="ignoring proxy
container: id=0964bc585e971c43b69d08b440d2175d37b9c533b7e48026044a5694a4abeb5a"
interlock_1 | time="2016-02-21T04:12:31Z" level=debug msg="event received:
type=attach id=0964bc585e971c43b69d08b440d2175d37b9c533b7e48026044a5694a4abeb5a"
interlock_1 | time="2016-02-21T04:12:31Z" level=debug msg="event received:
type=attach id=a01eca3a526c9f3a7cac36c6ffd9ae01643f7e866da7a40a46a2eedc9b530f74"

Note: You may skip section 3B and go to the Application Deployment Configuration section.

	

	

	 	

	

	REFERENCE ARCHITECUTRE | SERVICE DISCOVERY AND LOAD BALANCING WITH UCP

REFERENCE ARCHITECTURE / 14

3B. Interlock and HAProxy
	
The following steps provide a guideline to configuring the load-balancing solution using Interlock +
HAProxy:

1. On any controller nodes, update Interlock configs using a single curl command against UCP k/v

store.

Note Please make sure to substitute your own password for HAProxy by updating the value
of adminPass.

Note: We are using a sample HAProxy config, Full documentation on HAProxy options can be found
here github.com/ehazlett/interlock/blob/master/docs/configuration.md. You may adjust the
configurations per your requirements.

Note: You will notice that we're using the FQDN of UCP to load Interlock's configs to the K/V store.
This will ensure that Interlock can reach and listen to events from any controller. However, Interlock
needs to access the UCP on port 2376 (default port of the Swarm Manager container). Therefore, you
need to ensure that the UCP Controller Load balancer will allow traffic to that port to reach the
controllers. Alternatively, you can configure an internal UCP load balancer that doesn't restrict any
ports to pass to the UCP controllers.

Note: You need to substitute $UCP_FQDN with your UCP’s FQDN (e.g ucp.myenterprise.com)

$ docker exec -ti ucp-kv curl \
 --cacert /etc/docker/ssl/ca.pem \
 --cert /etc/docker/ssl/cert.pem \
 --key /etc/docker/ssl/key.pem \
 https://$UCP_FQDN:12379/v2/keys/interlock/v1/config -XPUT -d
value='listenAddr = ":8080" dockerURL = "tcp://$UCP_FQDN:2376"
tlsCaCert = "/certs/ca.pem"
tlsCert = "/certs/cert.pem"
tlsKey = "/certs/key.pem"

[[extensions]]
name = "haproxy"
configPath = "/usr/local/etc/haproxy/haproxy.cfg"
pidPath = "/usr/local/etc/haproxy/haproxy.pid"
sslCert = ""
maxConn = 1024
port = 80
sslPort = 443
adminUser = "admin"
adminPass = "CHANGEME"'

2. On the dedicated UCP node (lb), install Docker Compose docs.docker.com/compose/install.

Then ensure that docker-compose is installed:

$ docker-compose version
docker-compose version 1.6.2, build 4d7027
docker-py version: 1.7.2
CPython version: 2.7.6

	 	

	

	REFERENCE ARCHITECUTRE | SERVICE DISCOVERY AND LOAD BALANCING WITH UCP

REFERENCE ARCHITECTURE / 15

OpenSSL version: OpenSSL 1.0.1f 6 Jan 2014

3. On the dedicated UCP node (lb), clone the repo github.com/nicolaka/interlock-lbs.

$ git clone https://github.com/nicolaka/interlock-lbs

4. On the dedicated UCP node (lb), export an environment variable called CONTROLLER_IP. This

variable should be the FQDN of your UCP.

$ export CONTROLLER_IP=ucp.myenterprise.com

5. On the dedicated UCP node (lb), deploy Interlock+HAProxy using the following docker-compose

command:

$ cd ./interlock-lbs/interlock-haproxy
interlock-lbs/interlock-haproxy$ docker-compose up -d

6. Confirm that Interlock is connected to the Swarm event stream:

interlock-lbs/interlock-haproxy$ docker-compose logs
Attaching to interlockhaproxy_haproxy_1, interlockhaproxy_interlock_1
haproxy_1 | [WARNING] 051/045104 (1) : config : log format ignored for
frontend 'http-default' since it has no log address.
interlock_1 | time="2016-02-21T04:51:04Z" level=info msg="interlock 1.0.0
(57c4f86)"
interlock_1 | time="2016-02-21T04:51:04Z" level=debug msg="using kv:
addr=etcd://ucp.myenterprise.com:12379"
interlock_1 | time="2016-02-21T04:51:04Z" level=debug msg="Trusting certs
with subjects: [0\x1e1\x1c0\x1a\x06\x03U\x04\x03\x13\x13UCP Cluster Root
CA]"
interlock_1 | time="2016-02-21T04:51:04Z" level=debug msg="configuring TLS
for KV"
interlock_1 | time="2016-02-21T04:51:04Z" level=debug msg="using tls for
communication with docker"
interlock_1 | time="2016-02-21T04:51:04Z" level=debug msg="docker client:
url=tcp://10.0.20.65:3376"
interlock_1 | time="2016-02-21T04:51:04Z" level=debug msg="loading
extension: name=haproxy configpath=/usr/local/etc/haproxy/haproxy.cfg"
interlock_1 | time="2016-02-21T04:51:04Z" level=debug msg="starting event
handling"
interlock_1 | time="2016-02-21T04:51:04Z" level=debug msg="checking to
reload"
interlock_1 | time="2016-02-21T04:51:04Z" level=debug msg=reloading
interlock_1 | time="2016-02-21T04:51:04Z" level=debug msg="updating load
balancers"
interlock_1 | time="2016-02-21T04:51:04Z" level=debug msg="generating
proxy config" ext=haproxy
interlock_1 | time="2016-02-21T04:51:04Z" level=debug msg="event received:
type= id="
interlock_1 | time="2016-02-21T04:51:04Z" level=info msg="configuration
updated" ext=haproxy

	 	

	

	REFERENCE ARCHITECUTRE | SERVICE DISCOVERY AND LOAD BALANCING WITH UCP

REFERENCE ARCHITECTURE / 16

Application Deployment Configuration

Now that Interlock+LB are up and configured to listen on Swarm events. You can start deploying your
applications on the UCP cluster. Interlock expects specific container metadata via labels. A complete list
of options can be found here github.com/ehazlett/interlock/blob/master/docs/interlock_data.md.

In our sample app, we want to expose two services externally. These services are voting-
app and results-app. For interlock to register these services as backends for the load balancer, we
need to provide additional container labels. In our case, we want voting-app to be registered as
vote.myenterprise.com and results-app as results.myenterprise.com. The DNS records
need to be mapped to the IP address of (lb). You may also map a wildcard DNS record to the lb (e.g
*.apps.myenterprise.com). To configure and deploy the app, follow the below steps:

1. From your local machine, download a UCP client bundle. Instructions can be found here

docs.docker.com/ucp/deploy-application/#step-2-get-the-client-bundle-and-configure-a-shell
	
2. Ensure that you have Docker Compose installed on your local environment.

$ docker-compose version
docker-compose version 1.6.2, build 4d7027
docker-py version: 1.7.2
CPython version: 2.7.6
OpenSSL version: OpenSSL 1.0.1f 6 Jan 2014

3. Ensure that you're pointing your local Docker client to the UCP controller

$ cd /path/to/ucp-bundle-admin
ucp-bundle-admin$ source env.sh

Followed by:

ucp-bundle-admin$ docker version
Client:
 Version: 1.10.1
 API version: 1.22
 Go version: go1.5.3
 Git commit: 9e83765
 Built: Thu Feb 11 19:27:08 2016
 OS/Arch: linux/amd64

Server:
 Version: ucp/1.0.0
 API version: 1.22
 Go version: go1.5.3
 Git commit: 5c4f6d8
 Built:
 OS/Arch: linux/amd64
	

	 	

	

	REFERENCE ARCHITECUTRE | SERVICE DISCOVERY AND LOAD BALANCING WITH UCP

REFERENCE ARCHITECTURE / 17

4. We need to adjust the app's Compose file to add the necessary Interlock labels.

Under voting-app, we add the following:


``` 
     labels: 
      interlock.hostname: "vote" 
      interlock.domain:   "myenterprise.com"  
```  


Under results-app we add the following:


``` 
     labels: 
      interlock.hostname: "results" 
      interlock.domain:   "myenterprise.com"  
```  


The complete docker-compose file now should like this:


```  
version: "2"   
 
services: 
   voting-app: 
     image: docker/example-voting-app-voting-app 
     ports: 
       - "80" 
     networks: 
       - voteapp 
     labels: 
      interlock.hostname: "vote" 
      interlock.domain:   "myenterprise.com" 
   result-app:      
     image: docker/example-voting-app-result-app 
     ports: 
       - "80" 
     networks: 
       - voteapp 
     labels: 
      interlock.hostname: "results" 
      interlock.domain:   "myenterprise.com" 
   worker:      
     image: docker/example-voting-app-worker 
     networks: 
       voteapp: 
         aliases: 
           - workers 
   redis: 
     image: redis 



	 	

	

	REFERENCE ARCHITECUTRE | SERVICE DISCOVERY AND LOAD BALANCING WITH UCP  

REFERENCE ARCHITECTURE   /  18 
    

     ports: 
       - "6379" 
     networks: 
       - voteapp 
     container_name: redis 
 
   db: 
     image: postgres:9.4 
     volumes: 
       - "db-data:/var/lib/postgresql/data" 
     networks: 
       - voteapp 
     container_name: db 
 volumes: 
   db-data: 
 
  networks: 
   voteapp:  
```  


5. Deploy the app on UCP using Docker Compose:

voteapps$ docker-compose up -d

6. On the lb, confirm that Interlock registered the apps with the load balancer by looking at its logs.

You should see the "restarted proxy container" message if Interlock registered the container
successfully.

interlock-lbs/interlock-haproxy$ docker-compose logs
interlock_1 | time="2016-02-21T05:09:54Z" level=debug msg="adding host
name=vote_myenterprise_com domain=vote.myenterprise.com" ext=haproxy
interlock_1 | time="2016-02-21T05:09:54Z" level=info
msg="configuration updated" ext=haproxy interlock_1 | time="2016-02-
21T05:09:54Z" level=debug msg="dropping SYN packets to trigger client
re-send" ext=haproxy
interlock_1 | time="2016-02-21T05:09:54Z" level=debug
msg="&{/sbin/iptables [/sbin/iptables -I INPUT -p tcp --dport 80 --syn
-j DROP] [] <nil> <nil> <nil> [] <nil> <nil> <nil> <nil> false [] []
[] [] <nil>}" ext=haproxy
interlock_1 | time="2016-02-21T05:09:54Z" level=warning msg="error
signaling clients to resend; you will notice dropped packets: exit
status 3" ext=haproxy
interlock_1 | time="2016-02-21T05:09:54Z" level=debug msg="event
received: type= id="
interlock_1 | time="2016-02-21T05:09:54Z" level=debug msg="event
received: type=kill
id=608a397a7288d26932d3d83a912b1172a085c09d0eaf0d48be54dd282f3d3d49"
interlock_1 | time="2016-02-21T05:09:56Z" level=info msg="restarted
proxy container: id=608a397a7288 name=/lb/interlockhaproxy_haproxy_1"
ext=haproxy

	 	

	

	REFERENCE ARCHITECUTRE | SERVICE DISCOVERY AND LOAD BALANCING WITH UCP

REFERENCE ARCHITECTURE / 19

7. You can now access the app by going to http://vote.myenterprise.com or
http://results.myenterprise.com!

8. If you need to scale the voting-app service, you can simply scale it using docker-compose.

Interlock will add the newly added container to the voting-app backend. For example, if you're
using HAProxy, you can see that the containers were added to the correct backend by going to
the http://vote.myenterprise.com/haproxy?stats.

$ docker-compose scale voting-app=10
Creating and starting 2 ... done
Creating and starting 3 ... done
Creating and starting 4 ... done
Creating and starting 5 ... done
Creating and starting 6 ... done
Creating and starting 7 ... done
Creating and starting 8 ... done
Creating and starting 9 ... done
Creating and starting 10 ... done

Summary
In this Reference Architecture, we set up a highly-available Docker Universal Control Plane (UCP)
cluster and enabled dynamic built-in service discovery and load balancing by addressing three key
design requirements: Universal Control Plane High-Availability, Cluster Service Discovery with Load
Distribution, and External Service Discovery with Load Distribution. Additionally, sample
configurations and workflows for deploying microservice applications on Universal Control Plane.

For more information on Universal Control Plane and the rest of the Docker Datacenter subscription,
visit our website at www.docker.com/products/docker-datacenter.

	

	

	

	

www.docker.com

