A sibling pipeline aggregation which calculates a variety of stats across all bucket of a specified metric in a sibling aggregation. The specified metric must be numeric and the sibling aggregation must be a multi-bucket aggregation.
A stats_bucket
aggregation looks like this in isolation:
{ "stats_bucket": { "buckets_path": "the_sum" } }
Table 12. stats_bucket
Parameters
Parameter Name | Description | Required | Default Value |
---|---|---|---|
| The path to the buckets we wish to calculate stats for (see | Required | |
| The policy to apply when gaps are found in the data (see Dealing with gaps in the data for more details) | Optional |
|
| format to apply to the output value of this aggregation | Optional |
|
The following snippet calculates the stats for monthly sales
:
POST /sales/_search { "size": 0, "aggs" : { "sales_per_month" : { "date_histogram" : { "field" : "date", "interval" : "month" }, "aggs": { "sales": { "sum": { "field": "price" } } } }, "stats_monthly_sales": { "stats_bucket": { "buckets_path": "sales_per_month>sales" } } } }
|
And the following may be the response:
{ "took": 11, "timed_out": false, "_shards": ..., "hits": ..., "aggregations": { "sales_per_month": { "buckets": [ { "key_as_string": "2015/01/01 00:00:00", "key": 1420070400000, "doc_count": 3, "sales": { "value": 550.0 } }, { "key_as_string": "2015/02/01 00:00:00", "key": 1422748800000, "doc_count": 2, "sales": { "value": 60.0 } }, { "key_as_string": "2015/03/01 00:00:00", "key": 1425168000000, "doc_count": 2, "sales": { "value": 375.0 } } ] }, "stats_monthly_sales": { "count": 3, "min": 60.0, "max": 550.0, "avg": 328.3333333333333, "sum": 985.0 } } }