Usage of activations
Activations can either be used through an Activation
layer, or through the activation
argument supported by all forward layers:
from keras.layers import Activation, Dense
model.add(Dense(64))
model.add(Activation('tanh'))
This is equivalent to:
model.add(Dense(64, activation='tanh'))
You can also pass an element-wise TensorFlow/Theano/CNTK function as an activation:
from keras import backend as K
model.add(Dense(64, activation=K.tanh))
Available activations
softmax
keras.activations.softmax(x, axis=-1)
Softmax activation function.
Arguments
- x: Input tensor.
- axis: Integer, axis along which the softmax normalization is applied.
Returns
Tensor, output of softmax transformation.
Raises
ValueError: In case dim(x) == 1
.
elu
keras.activations.elu(x, alpha=1.0)
Exponential linear unit.
Arguments
- x: Input tensor.
- alpha: A scalar, slope of negative section.
Returns
The exponential linear activation: x
if x > 0
and
alpha * (exp(x)-1)
if x < 0
.
References
selu
keras.activations.selu(x)
Scaled Exponential Linear Unit (SELU).
SELU is equal to: scale * elu(x, alpha)
, where alpha and scale
are pre-defined constants. The values of alpha
and scale
are
chosen so that the mean and variance of the inputs are preserved
between two consecutive layers as long as the weights are initialized
correctly (see lecun_normal
initialization) and the number of inputs
is "large enough" (see references for more information).
Arguments
- x: A tensor or variable to compute the activation function for.
Returns
The scaled exponential unit activation: scale * elu(x, alpha)
.
Note
- To be used together with the initialization "lecun_normal".
- To be used together with the dropout variant "AlphaDropout".
References
softplus
keras.activations.softplus(x)
Softplus activation function.
Arguments
- x: Input tensor.
Returns
The softplus activation: log(exp(x) + 1)
.
softsign
keras.activations.softsign(x)
Softsign activation function.
Arguments
- x: Input tensor.
Returns
The softplus activation: x / (abs(x) + 1)
.
relu
keras.activations.relu(x, alpha=0.0, max_value=None, threshold=0.0)
Rectified Linear Unit.
With default values, it returns element-wise max(x, 0)
.
Otherwise, it follows:
f(x) = max_value
for x >= max_value
,
f(x) = x
for threshold <= x < max_value
,
f(x) = alpha * (x - threshold)
otherwise.
Arguments
- x: Input tensor.
- alpha: float. Slope of the negative part. Defaults to zero.
- max_value: float. Saturation threshold.
- threshold: float. Threshold value for thresholded activation.
Returns
A tensor.
tanh
keras.activations.tanh(x)
Hyperbolic tangent activation function.
sigmoid
keras.activations.sigmoid(x)
Sigmoid activation function.
hard_sigmoid
keras.activations.hard_sigmoid(x)
Hard sigmoid activation function.
Faster to compute than sigmoid activation.
Arguments
- x: Input tensor.
Returns
Hard sigmoid activation:
0
ifx < -2.5
1
ifx > 2.5
0.2 * x + 0.5
if-2.5 <= x <= 2.5
.
exponential
keras.activations.exponential(x)
Exponential (base e) activation function.
linear
keras.activations.linear(x)
Linear (i.e. identity) activation function.
On "Advanced Activations"
Activations that are more complex than a simple TensorFlow/Theano/CNTK function (eg. learnable activations, which maintain a state) are available as Advanced Activation layers, and can be found in the module keras.layers.advanced_activations
. These include PReLU
and LeakyReLU
.