Usage of initializers
Initializations define the way to set the initial random weights of Keras layers.
The keyword arguments used for passing initializers to layers will depend on the layer. Usually it is simply kernel_initializer
and bias_initializer
:
model.add(Dense(64,
kernel_initializer='random_uniform',
bias_initializer='zeros'))
Available initializers
The following built-in initializers are available as part of the keras.initializers
module:
Initializer
keras.initializers.Initializer()
Initializer base class: all initializers inherit from this class.
Zeros
keras.initializers.Zeros()
Initializer that generates tensors initialized to 0.
Ones
keras.initializers.Ones()
Initializer that generates tensors initialized to 1.
Constant
keras.initializers.Constant(value=0)
Initializer that generates tensors initialized to a constant value.
Arguments
value: float; the value of the generator tensors.
RandomNormal
keras.initializers.RandomNormal(mean=0.0, stddev=0.05, seed=None)
Initializer that generates tensors with a normal distribution.
Arguments
mean: a python scalar or a scalar tensor. Mean of the random values to generate. stddev: a python scalar or a scalar tensor. Standard deviation of the random values to generate. seed: A Python integer. Used to seed the random generator.
RandomUniform
keras.initializers.RandomUniform(minval=-0.05, maxval=0.05, seed=None)
Initializer that generates tensors with a uniform distribution.
Arguments
minval: A python scalar or a scalar tensor. Lower bound of the range of random values to generate. maxval: A python scalar or a scalar tensor. Upper bound of the range of random values to generate. Defaults to 1 for float types. seed: A Python integer. Used to seed the random generator.
TruncatedNormal
keras.initializers.TruncatedNormal(mean=0.0, stddev=0.05, seed=None)
Initializer that generates a truncated normal distribution.
These values are similar to values from a RandomNormal
except that values more than two standard deviations from the mean
are discarded and re-drawn. This is the recommended initializer for
neural network weights and filters.
Arguments
mean: a python scalar or a scalar tensor. Mean of the random values to generate. stddev: a python scalar or a scalar tensor. Standard deviation of the random values to generate. seed: A Python integer. Used to seed the random generator.
VarianceScaling
keras.initializers.VarianceScaling(scale=1.0, mode='fan_in', distribution='normal', seed=None)
Initializer capable of adapting its scale to the shape of weights.
With distribution="normal"
, samples are drawn from a truncated normal
distribution centered on zero, with stddev = sqrt(scale / n)
where n is:
- number of input units in the weight tensor, if mode = "fan_in"
- number of output units, if mode = "fan_out"
- average of the numbers of input and output units, if mode = "fan_avg"
With distribution="uniform"
,
samples are drawn from a uniform distribution
within [-limit, limit], with limit = sqrt(3 * scale / n)
.
Arguments
- scale: Scaling factor (positive float).
- mode: One of "fan_in", "fan_out", "fan_avg".
- distribution: Random distribution to use. One of "normal", "uniform".
- seed: A Python integer. Used to seed the random generator.
Raises
ValueError: In case of an invalid value for the "scale", mode" or "distribution" arguments.
Orthogonal
keras.initializers.Orthogonal(gain=1.0, seed=None)
Initializer that generates a random orthogonal matrix.
Arguments
- gain: Multiplicative factor to apply to the orthogonal matrix.
- seed: A Python integer. Used to seed the random generator.
References
Identity
keras.initializers.Identity(gain=1.0)
Initializer that generates the identity matrix.
Only use for 2D matrices. If the long side of the matrix is a multiple of the short side, multiple identity matrices are concatenated along the long side.
Arguments
gain: Multiplicative factor to apply to the identity matrix.
lecun_uniform
keras.initializers.lecun_uniform(seed=None)
LeCun uniform initializer.
It draws samples from a uniform distribution within [-limit, limit]
where limit
is sqrt(3 / fan_in)
where fan_in
is the number of input units in the weight tensor.
Arguments
- seed: A Python integer. Used to seed the random generator.
Returns
An initializer.
References
glorot_normal
keras.initializers.glorot_normal(seed=None)
Glorot normal initializer, also called Xavier normal initializer.
It draws samples from a truncated normal distribution centered on 0
with stddev = sqrt(2 / (fan_in + fan_out))
where fan_in
is the number of input units in the weight tensor
and fan_out
is the number of output units in the weight tensor.
Arguments
- seed: A Python integer. Used to seed the random generator.
Returns
An initializer.
References
glorot_uniform
keras.initializers.glorot_uniform(seed=None)
Glorot uniform initializer, also called Xavier uniform initializer.
It draws samples from a uniform distribution within [-limit, limit]
where limit
is sqrt(6 / (fan_in + fan_out))
where fan_in
is the number of input units in the weight tensor
and fan_out
is the number of output units in the weight tensor.
Arguments
- seed: A Python integer. Used to seed the random generator.
Returns
An initializer.
References
he_normal
keras.initializers.he_normal(seed=None)
He normal initializer.
It draws samples from a truncated normal distribution centered on 0
with stddev = sqrt(2 / fan_in)
where fan_in
is the number of input units in the weight tensor.
Arguments
- seed: A Python integer. Used to seed the random generator.
Returns
An initializer.
References
lecun_normal
keras.initializers.lecun_normal(seed=None)
LeCun normal initializer.
It draws samples from a truncated normal distribution centered on 0
with stddev = sqrt(1 / fan_in)
where fan_in
is the number of input units in the weight tensor.
Arguments
- seed: A Python integer. Used to seed the random generator.
Returns
An initializer.
References
he_uniform
keras.initializers.he_uniform(seed=None)
He uniform variance scaling initializer.
It draws samples from a uniform distribution within [-limit, limit]
where limit
is sqrt(6 / fan_in)
where fan_in
is the number of input units in the weight tensor.
Arguments
- seed: A Python integer. Used to seed the random generator.
Returns
An initializer.
References
An initializer may be passed as a string (must match one of the available initializers above), or as a callable:
from keras import initializers
model.add(Dense(64, kernel_initializer=initializers.random_normal(stddev=0.01)))
# also works; will use the default parameters.
model.add(Dense(64, kernel_initializer='random_normal'))
Using custom initializers
If passing a custom callable, then it must take the argument shape
(shape of the variable to initialize) and dtype
(dtype of generated values):
from keras import backend as K
def my_init(shape, dtype=None):
return K.random_normal(shape, dtype=dtype)
model.add(Dense(64, kernel_initializer=my_init))