#include <linux/seccomp.h> #include <linux/filter.h> #include <linux/audit.h> #include <linux/signal.h> #include <sys/ptrace.h> int seccomp(unsigned int operation, unsigned int flags, void *args);
Currently, Linux supports the following operation values:
Note that although the calling thread can no longer call sigprocmask(2), it can use sigreturn(2) to block all signals apart from SIGKILL and SIGSTOP. This means that alarm(2) (for example) is not sufficient for restricting the process's execution time. Instead, to reliably terminate the process, SIGKILL must be used. This can be done by using timer_create(2) with SIGEV_SIGNAL and sigev_signo set to SIGKILL, or by using setrlimit(2) to set the hard limit for RLIMIT_CPU.
This operation is available only if the kernel is configured with CONFIG_SECCOMP enabled.
The value of flags must be 0, and args must be NULL.
This operation is functionally identical to the call:
prctl(PR_SET_SECCOMP, SECCOMP_MODE_STRICT);
If fork(2) or clone(2) is allowed by the filter, any child processes will be constrained to the same system call filters as the parent. If execve(2) is allowed, the existing filters will be preserved across a call to execve(2).
In order to use the SECCOMP_SET_MODE_FILTER operation, either the caller must have the CAP_SYS_ADMIN capability in its user namespace, or the thread must already have the no_new_privs bit set. If that bit was not already set by an ancestor of this thread, the thread must make the following call:
prctl(PR_SET_NO_NEW_PRIVS, 1);
Otherwise, the SECCOMP_SET_MODE_FILTER operation will fail and return EACCES in errno. This requirement ensures that an unprivileged process cannot apply a malicious filter and then invoke a set-user-ID or other privileged program using execve(2), thus potentially compromising that program. (Such a malicious filter might, for example, cause an attempt to use setuid(2) to set the caller's user IDs to non-zero values to instead return 0 without actually making the system call. Thus, the program might be tricked into retaining superuser privileges in circumstances where it is possible to influence it to do dangerous things because it did not actually drop privileges.)
If prctl(2) or seccomp() is allowed by the attached filter, further filters may be added. This will increase evaluation time, but allows for further reduction of the attack surface during execution of a thread.
The SECCOMP_SET_MODE_FILTER operation is available only if the kernel is configured with CONFIG_SECCOMP_FILTER enabled.
When flags is 0, this operation is functionally identical to the call:
prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, args);
The recognized flags are:
If any thread cannot synchronize to the same filter tree, the call will not attach the new seccomp filter, and will fail, returning the first thread ID found that cannot synchronize. Synchronization will fail if another thread in the same process is in SECCOMP_MODE_STRICT or if it has attached new seccomp filters to itself, diverging from the calling thread's filter tree.
struct sock_fprog { unsigned short len; /* Number of BPF instructions */ struct sock_filter *filter; /* Pointer to array of BPF instructions */ };
Each program must contain one or more BPF instructions:
struct sock_filter { /* Filter block */ __u16 code; /* Actual filter code */ __u8 jt; /* Jump true */ __u8 jf; /* Jump false */ __u32 k; /* Generic multiuse field */ };
When executing the instructions, the BPF program operates on the system call information made available (i.e., use the BPF_ABS addressing mode) as a (read-only) buffer of the following form:
struct seccomp_data { int nr; /* System call number */ __u32 arch; /* AUDIT_ARCH_* value (see <linux/audit.h>) */ __u64 instruction_pointer; /* CPU instruction pointer */ __u64 args[6]; /* Up to 6 system call arguments */ };
Because numbering of system calls varies between architectures and some architectures (e.g., x86-64) allow user-space code to use the calling conventions of multiple architectures, it is usually necessary to verify the value of the arch field.
It is strongly recommended to use a whitelisting approach whenever possible because such an approach is more robust and simple. A blacklist will have to be updated whenever a potentially dangerous system call is added (or a dangerous flag or option if those are blacklisted), and it is often possible to alter the representation of a value without altering its meaning, leading to a blacklist bypass.
The arch field is not unique for all calling conventions. The x86-64 ABI and the x32 ABI both use AUDIT_ARCH_X86_64 as arch, and they run on the same processors. Instead, the mask __X32_SYSCALL_BIT is used on the system call number to tell the two ABIs apart.
This means that in order to create a seccomp-based blacklist for system calls performed through the x86-64 ABI, it is necessary to not only check that arch equals AUDIT_ARCH_X86_64, but also to explicitly reject all system calls that contain __X32_SYSCALL_BIT in nr.
The instruction_pointer field provides the address of the machine-language instruction that performed the system call. This might be useful in conjunction with the use of /proc/[pid]/maps to perform checks based on which region (mapping) of the program made the system call. (Probably, it is wise to lock down the mmap(2) and mprotect(2) system calls to prevent the program from subverting such checks.)
When checking values from args against a blacklist, keep in mind that arguments are often silently truncated before being processed, but after the seccomp check. For example, this happens if the i386 ABI is used on an x86-64 kernel: although the kernel will normally not look beyond the 32 lowest bits of the arguments, the values of the full 64-bit registers will be present in the seccomp data. A less surprising example is that if the x86-64 ABI is used to perform a system call that takes an argument of type int, the more-significant half of the argument register is ignored by the system call, but visible in the seccomp data.
A seccomp filter returns a 32-bit value consisting of two parts: the most significant 16 bits (corresponding to the mask defined by the constant SECCOMP_RET_ACTION) contain one of the "action" values listed below; the least significant 16-bits (defined by the constant SECCOMP_RET_DATA) are "data" to be associated with this return value.
If multiple filters exist, they are all executed, in reverse order of their addition to the filter tree---that is, the most recently installed filter is executed first. (Note that all filters will be called even if one of the earlier filters returns SECCOMP_RET_KILL. This is done to simplify the kernel code and to provide a tiny speed-up in the execution of sets of filters by avoiding a check for this uncommon case.) The return value for the evaluation of a given system call is the first-seen SECCOMP_RET_ACTION value of highest precedence (along with its accompanying data) returned by execution of all of the filters.
In decreasing order of precedence, the values that may be returned by a seccomp filter are:
A tracer will be notified if it requests PTRACE_O_TRACESECCOMP using ptrace(PTRACE_SETOPTIONS). The tracer will be notified of a PTRACE_EVENT_SECCOMP and the SECCOMP_RET_DATA portion of the filter's return value will be available to the tracer via PTRACE_GETEVENTMSG.
The tracer can skip the system call by changing the system call number to -1. Alternatively, the tracer can change the system call requested by changing the system call to a valid system call number. If the tracer asks to skip the system call, then the system call will appear to return the value that the tracer puts in the return value register.
Before kernel 4.8, the seccomp check will not be run again after the tracer is notified. (This means that, on older kernels, seccomp-based sandboxes must not allow use of ptrace(2)---even of other sandboxed processes---without extreme care; ptracers can use this mechanism to escape from the seccomp sandbox.)
The Seccomp field of the /proc/[pid]/status file provides a method of viewing the seccomp mode of a process; see proc(5).
seccomp() provides a superset of the functionality provided by the prctl(2) PR_SET_SECCOMP operation (which does not support flags).
Since Linux 4.4, the prctl(2) PTRACE_SECCOMP_GET_FILTER operation can be used to dump a process's seccomp filters.
The remaining command-line arguments specify the pathname and additional arguments of a program that the example program should attempt to execute using execv(3) (a library function that employs the execve(2) system call). Some example runs of the program are shown below.
First, we display the architecture that we are running on (x86-64) and then construct a shell function that looks up system call numbers on this architecture:
$ uname -m x86_64 $ syscall_nr() { cat /usr/src/linux/arch/x86/syscalls/syscall_64.tbl | \ awk '$2 != "x32" && $3 == "'$1'" { print $1 }' }
When the BPF filter rejects a system call (case [2] above), it causes the system call to fail with the error number specified on the command line. In the experiments shown here, we'll use error number 99:
$ errno 99 EADDRNOTAVAIL 99 Cannot assign requested address
In the following example, we attempt to run the command whoami(1), but the BPF filter rejects the execve(2) system call, so that the command is not even executed:
$ syscall_nr execve 59 $ ./a.out Usage: ./a.out <syscall_nr> <arch> <errno> <prog> [<args>] Hint for <arch>: AUDIT_ARCH_I386: 0x40000003 AUDIT_ARCH_X86_64: 0xC000003E $ ./a.out 59 0xC000003E 99 /bin/whoami execv: Cannot assign requested address
In the next example, the BPF filter rejects the write(2) system call, so that, although it is successfully started, the whoami(1) command is not able to write output:
$ syscall_nr write 1 $ ./a.out 1 0xC000003E 99 /bin/whoami
In the final example, the BPF filter rejects a system call that is not used by the whoami(1) command, so it is able to successfully execute and produce output:
$ syscall_nr preadv 295 $ ./a.out 295 0xC000003E 99 /bin/whoami cecilia
#include <errno.h> #include <stddef.h> #include <stdio.h> #include <stdlib.h> #include <unistd.h> #include <linux/audit.h> #include <linux/filter.h> #include <linux/seccomp.h> #include <sys/prctl.h> #define X32_SYSCALL_BIT 0x40000000 static int install_filter(int syscall_nr, int t_arch, int f_errno) { unsigned int upper_nr_limit = 0xffffffff; /* Assume that AUDIT_ARCH_X86_64 means the normal x86-64 ABI */ if (t_arch == AUDIT_ARCH_X86_64) upper_nr_limit = X32_SYSCALL_BIT - 1; struct sock_filter filter[] = { /* [0] Load architecture from 'seccomp_data' buffer into accumulator */ BPF_STMT(BPF_LD | BPF_W | BPF_ABS, (offsetof(struct seccomp_data, arch))), /* [1] Jump forward 5 instructions if architecture does not match 't_arch' */ BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, t_arch, 0, 5), /* [2] Load system call number from 'seccomp_data' buffer into accumulator */ BPF_STMT(BPF_LD | BPF_W | BPF_ABS, (offsetof(struct seccomp_data, nr))), /* [3] Check ABI - only needed for x86-64 in blacklist use cases. Use JGT instead of checking against the bit mask to avoid having to reload the syscall number. */ BPF_JUMP(BPF_JMP | BPF_JGT | BPF_K, upper_nr_limit, 3, 0), /* [4] Jump forward 1 instruction if system call number does not match 'syscall_nr' */ BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, syscall_nr, 0, 1), /* [5] Matching architecture and system call: don't execute the system call, and return 'f_errno' in 'errno' */ BPF_STMT(BPF_RET | BPF_K, SECCOMP_RET_ERRNO | (f_errno & SECCOMP_RET_DATA)), /* [6] Destination of system call number mismatch: allow other system calls */ BPF_STMT(BPF_RET | BPF_K, SECCOMP_RET_ALLOW), /* [7] Destination of architecture mismatch: kill process */ BPF_STMT(BPF_RET | BPF_K, SECCOMP_RET_KILL), }; struct sock_fprog prog = { .len = (unsigned short) (sizeof(filter) / sizeof(filter[0])), .filter = filter, }; if (seccomp(SECCOMP_SET_MODE_FILTER, 0, &prog)) { perror("seccomp"); return 1; } return 0; } int main(int argc, char **argv) { if (argc < 5) { fprintf(stderr, "Usage: " "%s <syscall_nr> <arch> <errno> <prog> [<args>]\n" "Hint for <arch>: AUDIT_ARCH_I386: 0x%X\n" " AUDIT_ARCH_X86_64: 0x%X\n" "\n", argv[0], AUDIT_ARCH_I386, AUDIT_ARCH_X86_64); exit(EXIT_FAILURE); } if (prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0)) { perror("prctl"); exit(EXIT_FAILURE); } if (install_filter(strtol(argv[1], NULL, 0), strtol(argv[2], NULL, 0), strtol(argv[3], NULL, 0))) exit(EXIT_FAILURE); execv(argv[4], &argv[4]); perror("execv"); exit(EXIT_FAILURE); }
Various pages from the libseccomp library, including: scmp_sys_resolver(1), seccomp_init(3), seccomp_load(3), seccomp_rule_add(3), and seccomp_export_bpf(3).
The kernel source files Documentation/networking/filter.txt and Documentation/prctl/seccomp_filter.txt.
McCanne, S. and Jacobson, V. (1992) The BSD Packet Filter: A New Architecture for User-level Packet Capture, Proceedings of the USENIX Winter 1993 Conference