matplotlib.scale¶matplotlib.scale.InvertedLog10Transform(shorthand_name=None)[source]¶Bases: matplotlib.scale.InvertedLogTransformBase
Creates a new TransformNode.
| Parameters: |
|
|---|
base = 10.0¶matplotlib.scale.InvertedLog2Transform(shorthand_name=None)[source]¶Bases: matplotlib.scale.InvertedLogTransformBase
Creates a new TransformNode.
| Parameters: |
|
|---|
base = 2.0¶matplotlib.scale.InvertedLogTransformBase(shorthand_name=None)[source]¶Bases: matplotlib.transforms.Transform
Creates a new TransformNode.
| Parameters: |
|
|---|
has_inverse = True¶input_dims = 1¶is_separable = True¶output_dims = 1¶transform_non_affine(a)[source]¶Performs only the non-affine part of the transformation.
transform(values) is always equivalent to
transform_affine(transform_non_affine(values)).
In non-affine transformations, this is generally equivalent to
transform(values). In affine transformations, this is
always a no-op.
Accepts a numpy array of shape (N x input_dims) and
returns a numpy array of shape (N x output_dims).
Alternatively, accepts a numpy array of length input_dims
and returns a numpy array of length output_dims.
matplotlib.scale.InvertedNaturalLogTransform(shorthand_name=None)[source]¶Bases: matplotlib.scale.InvertedLogTransformBase
Creates a new TransformNode.
| Parameters: |
|
|---|
base = 2.718281828459045¶matplotlib.scale.InvertedSymmetricalLogTransform(base, linthresh, linscale)[source]¶Bases: matplotlib.transforms.Transform
has_inverse = True¶input_dims = 1¶inverted()[source]¶Return the corresponding inverse transformation.
The return value of this method should be treated as temporary. An update to self does not cause a corresponding update to its inverted copy.
x === self.inverted().transform(self.transform(x))
is_separable = True¶output_dims = 1¶transform_non_affine(a)[source]¶Performs only the non-affine part of the transformation.
transform(values) is always equivalent to
transform_affine(transform_non_affine(values)).
In non-affine transformations, this is generally equivalent to
transform(values). In affine transformations, this is
always a no-op.
Accepts a numpy array of shape (N x input_dims) and
returns a numpy array of shape (N x output_dims).
Alternatively, accepts a numpy array of length input_dims
and returns a numpy array of length output_dims.
matplotlib.scale.LinearScale(axis, **kwargs)[source]¶Bases: matplotlib.scale.ScaleBase
The default linear scale.
get_transform()[source]¶The transform for linear scaling is just the
IdentityTransform.
name = 'linear'¶matplotlib.scale.Log10Transform(nonpos='clip')[source]¶Bases: matplotlib.scale.LogTransformBase
base = 10.0¶matplotlib.scale.Log2Transform(nonpos='clip')[source]¶Bases: matplotlib.scale.LogTransformBase
base = 2.0¶matplotlib.scale.LogScale(axis, **kwargs)[source]¶Bases: matplotlib.scale.ScaleBase
A standard logarithmic scale. Care is taken so non-positive values are not plotted.
For computational efficiency (to push as much as possible to Numpy C code in the common cases), this scale provides different transforms depending on the base of the logarithm:
- base 10 (
Log10Transform)- base 2 (
Log2Transform)- base e (
NaturalLogTransform)- arbitrary base (
LogTransform)
Where to place the subticks between each major tick.
Should be a sequence of integers. For example, in a log10
scale: [2, 3, 4, 5, 6, 7, 8, 9]
will place 8 logarithmically spaced minor ticks between each major tick.
InvertedLog10Transform(shorthand_name=None)¶Bases: matplotlib.scale.InvertedLogTransformBase
Creates a new TransformNode.
| Parameters: |
|
|---|
base = 10.0¶inverted()¶Return the corresponding inverse transformation.
The return value of this method should be treated as temporary. An update to self does not cause a corresponding update to its inverted copy.
x === self.inverted().transform(self.transform(x))
InvertedLog2Transform(shorthand_name=None)¶Bases: matplotlib.scale.InvertedLogTransformBase
Creates a new TransformNode.
| Parameters: |
|
|---|
base = 2.0¶inverted()¶Return the corresponding inverse transformation.
The return value of this method should be treated as temporary. An update to self does not cause a corresponding update to its inverted copy.
x === self.inverted().transform(self.transform(x))
InvertedLogTransform(base)¶Bases: matplotlib.scale.InvertedLogTransformBase
inverted()¶Return the corresponding inverse transformation.
The return value of this method should be treated as temporary. An update to self does not cause a corresponding update to its inverted copy.
x === self.inverted().transform(self.transform(x))
InvertedNaturalLogTransform(shorthand_name=None)¶Bases: matplotlib.scale.InvertedLogTransformBase
Creates a new TransformNode.
| Parameters: |
|
|---|
base = 2.718281828459045¶inverted()¶Return the corresponding inverse transformation.
The return value of this method should be treated as temporary. An update to self does not cause a corresponding update to its inverted copy.
x === self.inverted().transform(self.transform(x))
Log10Transform(nonpos='clip')¶Bases: matplotlib.scale.LogTransformBase
base = 10.0¶inverted()¶Return the corresponding inverse transformation.
The return value of this method should be treated as temporary. An update to self does not cause a corresponding update to its inverted copy.
x === self.inverted().transform(self.transform(x))
Log2Transform(nonpos='clip')¶Bases: matplotlib.scale.LogTransformBase
base = 2.0¶inverted()¶Return the corresponding inverse transformation.
The return value of this method should be treated as temporary. An update to self does not cause a corresponding update to its inverted copy.
x === self.inverted().transform(self.transform(x))
LogTransform(base, nonpos='clip')¶Bases: matplotlib.scale.LogTransformBase
inverted()¶Return the corresponding inverse transformation.
The return value of this method should be treated as temporary. An update to self does not cause a corresponding update to its inverted copy.
x === self.inverted().transform(self.transform(x))
LogTransformBase(nonpos='clip')¶Bases: matplotlib.transforms.Transform
has_inverse = True¶input_dims = 1¶is_separable = True¶output_dims = 1¶transform_non_affine(a)¶Performs only the non-affine part of the transformation.
transform(values) is always equivalent to
transform_affine(transform_non_affine(values)).
In non-affine transformations, this is generally equivalent to
transform(values). In affine transformations, this is
always a no-op.
Accepts a numpy array of shape (N x input_dims) and
returns a numpy array of shape (N x output_dims).
Alternatively, accepts a numpy array of length input_dims
and returns a numpy array of length output_dims.
NaturalLogTransform(nonpos='clip')¶Bases: matplotlib.scale.LogTransformBase
base = 2.718281828459045¶inverted()¶Return the corresponding inverse transformation.
The return value of this method should be treated as temporary. An update to self does not cause a corresponding update to its inverted copy.
x === self.inverted().transform(self.transform(x))
name = 'log'¶matplotlib.scale.LogTransformBase(nonpos='clip')[source]¶Bases: matplotlib.transforms.Transform
has_inverse = True¶input_dims = 1¶is_separable = True¶output_dims = 1¶transform_non_affine(a)[source]¶Performs only the non-affine part of the transformation.
transform(values) is always equivalent to
transform_affine(transform_non_affine(values)).
In non-affine transformations, this is generally equivalent to
transform(values). In affine transformations, this is
always a no-op.
Accepts a numpy array of shape (N x input_dims) and
returns a numpy array of shape (N x output_dims).
Alternatively, accepts a numpy array of length input_dims
and returns a numpy array of length output_dims.
matplotlib.scale.LogisticTransform(nonpos='mask')[source]¶Bases: matplotlib.transforms.Transform
has_inverse = True¶input_dims = 1¶inverted()[source]¶Return the corresponding inverse transformation.
The return value of this method should be treated as temporary. An update to self does not cause a corresponding update to its inverted copy.
x === self.inverted().transform(self.transform(x))
is_separable = True¶output_dims = 1¶matplotlib.scale.LogitScale(axis, nonpos='mask')[source]¶Bases: matplotlib.scale.ScaleBase
Logit scale for data between zero and one, both excluded.
This scale is similar to a log scale close to zero and to one, and almost linear around 0.5. It maps the interval ]0, 1[ onto ]-infty, +infty[.
get_transform()[source]¶Return a LogitTransform instance.
limit_range_for_scale(vmin, vmax, minpos)[source]¶Limit the domain to values between 0 and 1 (excluded).
name = 'logit'¶matplotlib.scale.LogitTransform(nonpos='mask')[source]¶Bases: matplotlib.transforms.Transform
has_inverse = True¶input_dims = 1¶inverted()[source]¶Return the corresponding inverse transformation.
The return value of this method should be treated as temporary. An update to self does not cause a corresponding update to its inverted copy.
x === self.inverted().transform(self.transform(x))
is_separable = True¶output_dims = 1¶matplotlib.scale.NaturalLogTransform(nonpos='clip')[source]¶Bases: matplotlib.scale.LogTransformBase
base = 2.718281828459045¶matplotlib.scale.ScaleBase[source]¶Bases: object
The base class for all scales.
Scales are separable transformations, working on a single dimension.
Any subclasses will want to override:
matplotlib.scale.SymmetricalLogScale(axis, **kwargs)[source]¶Bases: matplotlib.scale.ScaleBase
The symmetrical logarithmic scale is logarithmic in both the positive and negative directions from the origin.
Since the values close to zero tend toward infinity, there is a need to have a range around zero that is linear. The parameter linthresh allows the user to specify the size of this range (-linthresh, linthresh).
Where to place the subticks between each major tick.
Should be a sequence of integers. For example, in a log10
scale: [2, 3, 4, 5, 6, 7, 8, 9]
will place 8 logarithmically spaced minor ticks between each major tick.
InvertedSymmetricalLogTransform(base, linthresh, linscale)¶Bases: matplotlib.transforms.Transform
has_inverse = True¶input_dims = 1¶inverted()¶Return the corresponding inverse transformation.
The return value of this method should be treated as temporary. An update to self does not cause a corresponding update to its inverted copy.
x === self.inverted().transform(self.transform(x))
is_separable = True¶output_dims = 1¶transform_non_affine(a)¶Performs only the non-affine part of the transformation.
transform(values) is always equivalent to
transform_affine(transform_non_affine(values)).
In non-affine transformations, this is generally equivalent to
transform(values). In affine transformations, this is
always a no-op.
Accepts a numpy array of shape (N x input_dims) and
returns a numpy array of shape (N x output_dims).
Alternatively, accepts a numpy array of length input_dims
and returns a numpy array of length output_dims.
SymmetricalLogTransform(base, linthresh, linscale)¶Bases: matplotlib.transforms.Transform
has_inverse = True¶input_dims = 1¶inverted()¶Return the corresponding inverse transformation.
The return value of this method should be treated as temporary. An update to self does not cause a corresponding update to its inverted copy.
x === self.inverted().transform(self.transform(x))
is_separable = True¶output_dims = 1¶transform_non_affine(a)¶Performs only the non-affine part of the transformation.
transform(values) is always equivalent to
transform_affine(transform_non_affine(values)).
In non-affine transformations, this is generally equivalent to
transform(values). In affine transformations, this is
always a no-op.
Accepts a numpy array of shape (N x input_dims) and
returns a numpy array of shape (N x output_dims).
Alternatively, accepts a numpy array of length input_dims
and returns a numpy array of length output_dims.
get_transform()[source]¶Return a SymmetricalLogTransform instance.
name = 'symlog'¶matplotlib.scale.SymmetricalLogTransform(base, linthresh, linscale)[source]¶Bases: matplotlib.transforms.Transform
has_inverse = True¶input_dims = 1¶inverted()[source]¶Return the corresponding inverse transformation.
The return value of this method should be treated as temporary. An update to self does not cause a corresponding update to its inverted copy.
x === self.inverted().transform(self.transform(x))
is_separable = True¶output_dims = 1¶transform_non_affine(a)[source]¶Performs only the non-affine part of the transformation.
transform(values) is always equivalent to
transform_affine(transform_non_affine(values)).
In non-affine transformations, this is generally equivalent to
transform(values). In affine transformations, this is
always a no-op.
Accepts a numpy array of shape (N x input_dims) and
returns a numpy array of shape (N x output_dims).
Alternatively, accepts a numpy array of length input_dims
and returns a numpy array of length output_dims.
matplotlib.scale.get_scale_docs()[source]¶Helper function for generating docstrings related to scales.