Previous topic

numpy.bmat

Next topic

numpy.empty_like

numpy.empty

numpy.empty(shape, dtype=float, order='C')

Return a new array of given shape and type, without initializing entries.

Parameters:

shape : int or tuple of int

Shape of the empty array

dtype : data-type, optional

Desired output data-type.

order : {‘C’, ‘F’}, optional

Whether to store multi-dimensional data in row-major (C-style) or column-major (Fortran-style) order in memory.

Returns:

out : ndarray

Array of uninitialized (arbitrary) data with the given shape, dtype, and order.

See also

empty_like, zeros, ones

Notes

empty, unlike zeros, does not set the array values to zero, and may therefore be marginally faster. On the other hand, it requires the user to manually set all the values in the array, and should be used with caution.

Examples

>>> np.empty([2, 2])
array([[ -9.74499359e+001,   6.69583040e-309],
       [  2.13182611e-314,   3.06959433e-309]])         #random
>>> np.empty([2, 2], dtype=int)
array([[-1073741821, -1067949133],
       [  496041986,    19249760]])                     #random