numpy.ma.fix_invalid¶
- numpy.ma.fix_invalid(a, mask=False, copy=True, fill_value=None)[source]¶
- Return input with invalid data masked and replaced by a fill value. - Invalid data means values of nan, inf, etc. - Parameters: - a : array_like - Input array, a (subclass of) ndarray. - mask : sequence, optional - Mask. Must be convertible to an array of booleans with the same shape as data. True indicates a masked (i.e. invalid) data. - copy : bool, optional - Whether to use a copy of a (True) or to fix a in place (False). Default is True. - fill_value : scalar, optional - Value used for fixing invalid data. Default is None, in which case the a.fill_value is used. - Returns: - b : MaskedArray - The input array with invalid entries fixed. - Notes - A copy is performed by default. - Examples - >>> x = np.ma.array([1., -1, np.nan, np.inf], mask=[1] + [0]*3) >>> x masked_array(data = [-- -1.0 nan inf], mask = [ True False False False], fill_value = 1e+20) >>> np.ma.fix_invalid(x) masked_array(data = [-- -1.0 -- --], mask = [ True False True True], fill_value = 1e+20) - >>> fixed = np.ma.fix_invalid(x) >>> fixed.data array([ 1.00000000e+00, -1.00000000e+00, 1.00000000e+20, 1.00000000e+20]) >>> x.data array([ 1., -1., NaN, Inf])