numpy.ma.mask_rowcols¶
- numpy.ma.mask_rowcols(a, axis=None)[source]¶
- Mask rows and/or columns of a 2D array that contain masked values. - Mask whole rows and/or columns of a 2D array that contain masked values. The masking behavior is selected using the axis parameter. - If axis is None, rows and columns are masked.
- If axis is 0, only rows are masked.
- If axis is 1 or -1, only columns are masked.
 - Parameters: - a : array_like, MaskedArray - The array to mask. If not a MaskedArray instance (or if no array elements are masked). The result is a MaskedArray with mask set to nomask (False). Must be a 2D array. - axis : int, optional - Axis along which to perform the operation. If None, applies to a flattened version of the array. - Returns: - a : MaskedArray - A modified version of the input array, masked depending on the value of the axis parameter. - Raises: - NotImplementedError - If input array a is not 2D. - See also - mask_rows
- Mask rows of a 2D array that contain masked values.
- mask_cols
- Mask cols of a 2D array that contain masked values.
- masked_where
- Mask where a condition is met.
 - Notes - The input array’s mask is modified by this function. - Examples - >>> import numpy.ma as ma >>> a = np.zeros((3, 3), dtype=np.int) >>> a[1, 1] = 1 >>> a array([[0, 0, 0], [0, 1, 0], [0, 0, 0]]) >>> a = ma.masked_equal(a, 1) >>> a masked_array(data = [[0 0 0] [0 -- 0] [0 0 0]], mask = [[False False False] [False True False] [False False False]], fill_value=999999) >>> ma.mask_rowcols(a) masked_array(data = [[0 -- 0] [-- -- --] [0 -- 0]], mask = [[False True False] [ True True True] [False True False]], fill_value=999999)