numpy.ma.masked_values¶
- numpy.ma.masked_values(x, value, rtol=1e-05, atol=1e-08, copy=True, shrink=True)[source]¶
- Mask using floating point equality. - Return a MaskedArray, masked where the data in array x are approximately equal to value, i.e. where the following condition is True - (abs(x - value) <= atol+rtol*abs(value)) - The fill_value is set to value and the mask is set to nomask if possible. For integers, consider using masked_equal. - Parameters: - x : array_like - Array to mask. - value : float - Masking value. - rtol : float, optional - Tolerance parameter. - atol : float, optional - Tolerance parameter (1e-8). - copy : bool, optional - Whether to return a copy of x. - shrink : bool, optional - Whether to collapse a mask full of False to nomask. - Returns: - result : MaskedArray - The result of masking x where approximately equal to value. - See also - masked_where
- Mask where a condition is met.
- masked_equal
- Mask where equal to a given value (integers).
 - Examples - >>> import numpy.ma as ma >>> x = np.array([1, 1.1, 2, 1.1, 3]) >>> ma.masked_values(x, 1.1) masked_array(data = [1.0 -- 2.0 -- 3.0], mask = [False True False True False], fill_value=1.1) - Note that mask is set to nomask if possible. - >>> ma.masked_values(x, 1.5) masked_array(data = [ 1. 1.1 2. 1.1 3. ], mask = False, fill_value=1.5) - For integers, the fill value will be different in general to the result of masked_equal. - >>> x = np.arange(5) >>> x array([0, 1, 2, 3, 4]) >>> ma.masked_values(x, 2) masked_array(data = [0 1 -- 3 4], mask = [False False True False False], fill_value=2) >>> ma.masked_equal(x, 2) masked_array(data = [0 1 -- 3 4], mask = [False False True False False], fill_value=999999)