carl-lib
1 Language
create-model
2 Grounding
ground
3 Embedding
embed
4 Covariate Detection
detect
5 Unit Table Construction
construct
6 Estimation
estimate
7.7

carl-lib

Moe Kayali

 (require carl-lib) package: carl-lib

The Causal Relational Learning (CaRL) framework is a tool for causal inference over relational data.

This software is currently in pre-alpha.

This is the reference implementation of the framework developed in the paper “Causal Relational Learning.”

1 Language

procedure

(create-model port)  model?

  port : input-port?
Read a file in the CaRL language and output the set of rules and queries it contains.

2 Grounding

procedure

(ground model conn)  (and/c graph? unweighted-graph?)

  model : (listof rule?)
  conn : connection?
Combine CaRL rules with a database instance to build a ground causal model.

3 Embedding

procedure

(embed gcm)  (and/c graph? unweighted-graph?)

  gcm : (and/c graph? unweighted-graph?)
Apply embeddings to a ground causal model (GCM) to create the augmented GCM.

4 Covariate Detection

procedure

(detect aug-gcm)  list?

  aug-gcm : (and/c graph? unweighted-graph?)
Return a set of sufficient covariates for adjustment.

5 Unit Table Construction

procedure

(construct augmented-gcm query Z)  matrix?

  augmented-gcm : (and/c graph? unweighted-graph?)
  query : causal-q?
  Z : list?
Construct a unit table given an augmented GCM and a set of covariates.

6 Estimation

procedure

(estimate unit-table)  real?

  unit-table : matrix?
Estimate the average treatment effect (ATE) given a unit table.