1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917
//! A pointer type for heap allocation. //! //! `Box<T>`, casually referred to as a 'box', provides the simplest form of //! heap allocation in Rust. Boxes provide ownership for this allocation, and //! drop their contents when they go out of scope. //! //! For non-zero-sized values, a [`Box`] will use the [`Global`] allocator for //! its allocation. It is valid to convert both ways between a [`Box`] and a //! raw pointer allocated with the [`Global`] allocator, given that the //! [`Layout`] used with the allocator is correct for the type. More precisely, //! a `value: *mut T` that has been allocated with the [`Global`] allocator //! with `Layout::for_value(&*value)` may be converted into a box using //! `Box::<T>::from_raw(value)`. Conversely, the memory backing a `value: *mut //! T` obtained from `Box::<T>::into_raw` may be deallocated using the //! [`Global`] allocator with `Layout::for_value(&*value)`. //! //! # Examples //! //! Move a value from the stack to the heap by creating a [`Box`]: //! //! ``` //! let val: u8 = 5; //! let boxed: Box<u8> = Box::new(val); //! ``` //! //! Move a value from a [`Box`] back to the stack by [dereferencing]: //! //! ``` //! let boxed: Box<u8> = Box::new(5); //! let val: u8 = *boxed; //! ``` //! //! Creating a recursive data structure: //! //! ``` //! #[derive(Debug)] //! enum List<T> { //! Cons(T, Box<List<T>>), //! Nil, //! } //! //! fn main() { //! let list: List<i32> = List::Cons(1, Box::new(List::Cons(2, Box::new(List::Nil)))); //! println!("{:?}", list); //! } //! ``` //! //! This will print `Cons(1, Cons(2, Nil))`. //! //! Recursive structures must be boxed, because if the definition of `Cons` //! looked like this: //! //! ```compile_fail,E0072 //! # enum List<T> { //! Cons(T, List<T>), //! # } //! ``` //! //! It wouldn't work. This is because the size of a `List` depends on how many //! elements are in the list, and so we don't know how much memory to allocate //! for a `Cons`. By introducing a `Box`, which has a defined size, we know how //! big `Cons` needs to be. //! //! [dereferencing]: ../../std/ops/trait.Deref.html //! [`Box`]: struct.Box.html #![stable(feature = "rust1", since = "1.0.0")] use core::any::Any; use core::borrow; use core::cmp::Ordering; use core::convert::From; use core::fmt; use core::future::Future; use core::hash::{Hash, Hasher}; use core::iter::{Iterator, FromIterator, FusedIterator}; use core::marker::{Unpin, Unsize}; use core::mem; use core::pin::Pin; use core::ops::{ CoerceUnsized, DispatchFromDyn, Deref, DerefMut, Receiver, Generator, GeneratorState }; use core::ptr::{self, NonNull, Unique}; use core::task::{Waker, Poll}; use crate::vec::Vec; use crate::raw_vec::RawVec; use crate::str::from_boxed_utf8_unchecked; /// A pointer type for heap allocation. /// /// See the [module-level documentation](../../std/boxed/index.html) for more. #[lang = "owned_box"] #[fundamental] #[stable(feature = "rust1", since = "1.0.0")] pub struct Box<T: ?Sized>(Unique<T>); impl<T> Box<T> { /// Allocates memory on the heap and then places `x` into it. /// /// This doesn't actually allocate if `T` is zero-sized. /// /// # Examples /// /// ``` /// let five = Box::new(5); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline(always)] pub fn new(x: T) -> Box<T> { box x } /// Constructs a new `Pin<Box<T>>`. If `T` does not implement `Unpin`, then /// `x` will be pinned in memory and unable to be moved. #[stable(feature = "pin", since = "1.33.0")] #[inline(always)] pub fn pin(x: T) -> Pin<Box<T>> { (box x).into() } } impl<T: ?Sized> Box<T> { /// Constructs a box from a raw pointer. /// /// After calling this function, the raw pointer is owned by the /// resulting `Box`. Specifically, the `Box` destructor will call /// the destructor of `T` and free the allocated memory. Since the /// way `Box` allocates and releases memory is unspecified, the /// only valid pointer to pass to this function is the one taken /// from another `Box` via the [`Box::into_raw`] function. /// /// This function is unsafe because improper use may lead to /// memory problems. For example, a double-free may occur if the /// function is called twice on the same raw pointer. /// /// [`Box::into_raw`]: struct.Box.html#method.into_raw /// /// # Examples /// /// ``` /// let x = Box::new(5); /// let ptr = Box::into_raw(x); /// let x = unsafe { Box::from_raw(ptr) }; /// ``` #[stable(feature = "box_raw", since = "1.4.0")] #[inline] pub unsafe fn from_raw(raw: *mut T) -> Self { Box(Unique::new_unchecked(raw)) } /// Consumes the `Box`, returning a wrapped raw pointer. /// /// The pointer will be properly aligned and non-null. /// /// After calling this function, the caller is responsible for the /// memory previously managed by the `Box`. In particular, the /// caller should properly destroy `T` and release the memory. The /// proper way to do so is to convert the raw pointer back into a /// `Box` with the [`Box::from_raw`] function. /// /// Note: this is an associated function, which means that you have /// to call it as `Box::into_raw(b)` instead of `b.into_raw()`. This /// is so that there is no conflict with a method on the inner type. /// /// [`Box::from_raw`]: struct.Box.html#method.from_raw /// /// # Examples /// /// ``` /// let x = Box::new(5); /// let ptr = Box::into_raw(x); /// ``` #[stable(feature = "box_raw", since = "1.4.0")] #[inline] pub fn into_raw(b: Box<T>) -> *mut T { Box::into_raw_non_null(b).as_ptr() } /// Consumes the `Box`, returning the wrapped pointer as `NonNull<T>`. /// /// After calling this function, the caller is responsible for the /// memory previously managed by the `Box`. In particular, the /// caller should properly destroy `T` and release the memory. The /// proper way to do so is to convert the `NonNull<T>` pointer /// into a raw pointer and back into a `Box` with the [`Box::from_raw`] /// function. /// /// Note: this is an associated function, which means that you have /// to call it as `Box::into_raw_non_null(b)` /// instead of `b.into_raw_non_null()`. This /// is so that there is no conflict with a method on the inner type. /// /// [`Box::from_raw`]: struct.Box.html#method.from_raw /// /// # Examples /// /// ``` /// #![feature(box_into_raw_non_null)] /// /// fn main() { /// let x = Box::new(5); /// let ptr = Box::into_raw_non_null(x); /// } /// ``` #[unstable(feature = "box_into_raw_non_null", issue = "47336")] #[inline] pub fn into_raw_non_null(b: Box<T>) -> NonNull<T> { Box::into_unique(b).into() } #[unstable(feature = "ptr_internals", issue = "0", reason = "use into_raw_non_null instead")] #[inline] #[doc(hidden)] pub fn into_unique(mut b: Box<T>) -> Unique<T> { // Box is kind-of a library type, but recognized as a "unique pointer" by // Stacked Borrows. This function here corresponds to "reborrowing to // a raw pointer", but there is no actual reborrow here -- so // without some care, the pointer we are returning here still carries // the `Uniq` tag. We round-trip through a mutable reference to avoid that. let unique = unsafe { b.0.as_mut() as *mut T }; mem::forget(b); unsafe { Unique::new_unchecked(unique) } } /// Consumes and leaks the `Box`, returning a mutable reference, /// `&'a mut T`. Note that the type `T` must outlive the chosen lifetime /// `'a`. If the type has only static references, or none at all, then this /// may be chosen to be `'static`. /// /// This function is mainly useful for data that lives for the remainder of /// the program's life. Dropping the returned reference will cause a memory /// leak. If this is not acceptable, the reference should first be wrapped /// with the [`Box::from_raw`] function producing a `Box`. This `Box` can /// then be dropped which will properly destroy `T` and release the /// allocated memory. /// /// Note: this is an associated function, which means that you have /// to call it as `Box::leak(b)` instead of `b.leak()`. This /// is so that there is no conflict with a method on the inner type. /// /// [`Box::from_raw`]: struct.Box.html#method.from_raw /// /// # Examples /// /// Simple usage: /// /// ``` /// fn main() { /// let x = Box::new(41); /// let static_ref: &'static mut usize = Box::leak(x); /// *static_ref += 1; /// assert_eq!(*static_ref, 42); /// } /// ``` /// /// Unsized data: /// /// ``` /// fn main() { /// let x = vec![1, 2, 3].into_boxed_slice(); /// let static_ref = Box::leak(x); /// static_ref[0] = 4; /// assert_eq!(*static_ref, [4, 2, 3]); /// } /// ``` #[stable(feature = "box_leak", since = "1.26.0")] #[inline] pub fn leak<'a>(b: Box<T>) -> &'a mut T where T: 'a // Technically not needed, but kept to be explicit. { unsafe { &mut *Box::into_raw(b) } } /// Converts a `Box<T>` into a `Pin<Box<T>>` /// /// This conversion does not allocate on the heap and happens in place. /// /// This is also available via [`From`]. #[unstable(feature = "box_into_pin", issue = "0")] pub fn into_pin(boxed: Box<T>) -> Pin<Box<T>> { // It's not possible to move or replace the insides of a `Pin<Box<T>>` // when `T: !Unpin`, so it's safe to pin it directly without any // additional requirements. unsafe { Pin::new_unchecked(boxed) } } } #[stable(feature = "rust1", since = "1.0.0")] unsafe impl<#[may_dangle] T: ?Sized> Drop for Box<T> { fn drop(&mut self) { // FIXME: Do nothing, drop is currently performed by compiler. } } #[stable(feature = "rust1", since = "1.0.0")] impl<T: Default> Default for Box<T> { /// Creates a `Box<T>`, with the `Default` value for T. fn default() -> Box<T> { box Default::default() } } #[stable(feature = "rust1", since = "1.0.0")] impl<T> Default for Box<[T]> { fn default() -> Box<[T]> { Box::<[T; 0]>::new([]) } } #[stable(feature = "default_box_extra", since = "1.17.0")] impl Default for Box<str> { fn default() -> Box<str> { unsafe { from_boxed_utf8_unchecked(Default::default()) } } } #[stable(feature = "rust1", since = "1.0.0")] impl<T: Clone> Clone for Box<T> { /// Returns a new box with a `clone()` of this box's contents. /// /// # Examples /// /// ``` /// let x = Box::new(5); /// let y = x.clone(); /// ``` #[rustfmt::skip] #[inline] fn clone(&self) -> Box<T> { box { (**self).clone() } } /// Copies `source`'s contents into `self` without creating a new allocation. /// /// # Examples /// /// ``` /// let x = Box::new(5); /// let mut y = Box::new(10); /// /// y.clone_from(&x); /// /// assert_eq!(*y, 5); /// ``` #[inline] fn clone_from(&mut self, source: &Box<T>) { (**self).clone_from(&(**source)); } } #[stable(feature = "box_slice_clone", since = "1.3.0")] impl Clone for Box<str> { fn clone(&self) -> Self { let len = self.len(); let buf = RawVec::with_capacity(len); unsafe { ptr::copy_nonoverlapping(self.as_ptr(), buf.ptr(), len); from_boxed_utf8_unchecked(buf.into_box()) } } } #[stable(feature = "rust1", since = "1.0.0")] impl<T: ?Sized + PartialEq> PartialEq for Box<T> { #[inline] fn eq(&self, other: &Box<T>) -> bool { PartialEq::eq(&**self, &**other) } #[inline] fn ne(&self, other: &Box<T>) -> bool { PartialEq::ne(&**self, &**other) } } #[stable(feature = "rust1", since = "1.0.0")] impl<T: ?Sized + PartialOrd> PartialOrd for Box<T> { #[inline] fn partial_cmp(&self, other: &Box<T>) -> Option<Ordering> { PartialOrd::partial_cmp(&**self, &**other) } #[inline] fn lt(&self, other: &Box<T>) -> bool { PartialOrd::lt(&**self, &**other) } #[inline] fn le(&self, other: &Box<T>) -> bool { PartialOrd::le(&**self, &**other) } #[inline] fn ge(&self, other: &Box<T>) -> bool { PartialOrd::ge(&**self, &**other) } #[inline] fn gt(&self, other: &Box<T>) -> bool { PartialOrd::gt(&**self, &**other) } } #[stable(feature = "rust1", since = "1.0.0")] impl<T: ?Sized + Ord> Ord for Box<T> { #[inline] fn cmp(&self, other: &Box<T>) -> Ordering { Ord::cmp(&**self, &**other) } } #[stable(feature = "rust1", since = "1.0.0")] impl<T: ?Sized + Eq> Eq for Box<T> {} #[stable(feature = "rust1", since = "1.0.0")] impl<T: ?Sized + Hash> Hash for Box<T> { fn hash<H: Hasher>(&self, state: &mut H) { (**self).hash(state); } } #[stable(feature = "indirect_hasher_impl", since = "1.22.0")] impl<T: ?Sized + Hasher> Hasher for Box<T> { fn finish(&self) -> u64 { (**self).finish() } fn write(&mut self, bytes: &[u8]) { (**self).write(bytes) } fn write_u8(&mut self, i: u8) { (**self).write_u8(i) } fn write_u16(&mut self, i: u16) { (**self).write_u16(i) } fn write_u32(&mut self, i: u32) { (**self).write_u32(i) } fn write_u64(&mut self, i: u64) { (**self).write_u64(i) } fn write_u128(&mut self, i: u128) { (**self).write_u128(i) } fn write_usize(&mut self, i: usize) { (**self).write_usize(i) } fn write_i8(&mut self, i: i8) { (**self).write_i8(i) } fn write_i16(&mut self, i: i16) { (**self).write_i16(i) } fn write_i32(&mut self, i: i32) { (**self).write_i32(i) } fn write_i64(&mut self, i: i64) { (**self).write_i64(i) } fn write_i128(&mut self, i: i128) { (**self).write_i128(i) } fn write_isize(&mut self, i: isize) { (**self).write_isize(i) } } #[stable(feature = "from_for_ptrs", since = "1.6.0")] impl<T> From<T> for Box<T> { /// Converts a generic type `T` into a `Box<T>` /// /// The conversion allocates on the heap and moves `t` /// from the stack into it. /// /// # Examples /// ```rust /// let x = 5; /// let boxed = Box::new(5); /// /// assert_eq!(Box::from(x), boxed); /// ``` fn from(t: T) -> Self { Box::new(t) } } #[stable(feature = "pin", since = "1.33.0")] impl<T: ?Sized> From<Box<T>> for Pin<Box<T>> { /// Converts a `Box<T>` into a `Pin<Box<T>>` /// /// This conversion does not allocate on the heap and happens in place. fn from(boxed: Box<T>) -> Self { Box::into_pin(boxed) } } #[stable(feature = "box_from_slice", since = "1.17.0")] impl<'a, T: Copy> From<&'a [T]> for Box<[T]> { /// Converts a `&[T]` into a `Box<[T]>` /// /// This conversion allocates on the heap /// and performs a copy of `slice`. /// /// # Examples /// ```rust /// // create a &[u8] which will be used to create a Box<[u8]> /// let slice: &[u8] = &[104, 101, 108, 108, 111]; /// let boxed_slice: Box<[u8]> = Box::from(slice); /// /// println!("{:?}", boxed_slice); /// ``` fn from(slice: &'a [T]) -> Box<[T]> { let mut boxed = unsafe { RawVec::with_capacity(slice.len()).into_box() }; boxed.copy_from_slice(slice); boxed } } #[stable(feature = "box_from_slice", since = "1.17.0")] impl<'a> From<&'a str> for Box<str> { /// Converts a `&str` into a `Box<str>` /// /// This conversion allocates on the heap /// and performs a copy of `s`. /// /// # Examples /// ```rust /// let boxed: Box<str> = Box::from("hello"); /// println!("{}", boxed); /// ``` #[inline] fn from(s: &'a str) -> Box<str> { unsafe { from_boxed_utf8_unchecked(Box::from(s.as_bytes())) } } } #[stable(feature = "boxed_str_conv", since = "1.19.0")] impl From<Box<str>> for Box<[u8]> { /// Converts a `Box<str>>` into a `Box<[u8]>` /// /// This conversion does not allocate on the heap and happens in place. /// /// # Examples /// ```rust /// // create a Box<str> which will be used to create a Box<[u8]> /// let boxed: Box<str> = Box::from("hello"); /// let boxed_str: Box<[u8]> = Box::from(boxed); /// /// // create a &[u8] which will be used to create a Box<[u8]> /// let slice: &[u8] = &[104, 101, 108, 108, 111]; /// let boxed_slice = Box::from(slice); /// /// assert_eq!(boxed_slice, boxed_str); /// ``` #[inline] fn from(s: Box<str>) -> Self { unsafe { Box::from_raw(Box::into_raw(s) as *mut [u8]) } } } impl Box<dyn Any> { #[inline] #[stable(feature = "rust1", since = "1.0.0")] /// Attempt to downcast the box to a concrete type. /// /// # Examples /// /// ``` /// use std::any::Any; /// /// fn print_if_string(value: Box<dyn Any>) { /// if let Ok(string) = value.downcast::<String>() { /// println!("String ({}): {}", string.len(), string); /// } /// } /// /// fn main() { /// let my_string = "Hello World".to_string(); /// print_if_string(Box::new(my_string)); /// print_if_string(Box::new(0i8)); /// } /// ``` pub fn downcast<T: Any>(self) -> Result<Box<T>, Box<dyn Any>> { if self.is::<T>() { unsafe { let raw: *mut dyn Any = Box::into_raw(self); Ok(Box::from_raw(raw as *mut T)) } } else { Err(self) } } } impl Box<dyn Any + Send> { #[inline] #[stable(feature = "rust1", since = "1.0.0")] /// Attempt to downcast the box to a concrete type. /// /// # Examples /// /// ``` /// use std::any::Any; /// /// fn print_if_string(value: Box<dyn Any + Send>) { /// if let Ok(string) = value.downcast::<String>() { /// println!("String ({}): {}", string.len(), string); /// } /// } /// /// fn main() { /// let my_string = "Hello World".to_string(); /// print_if_string(Box::new(my_string)); /// print_if_string(Box::new(0i8)); /// } /// ``` pub fn downcast<T: Any>(self) -> Result<Box<T>, Box<dyn Any + Send>> { <Box<dyn Any>>::downcast(self).map_err(|s| unsafe { // reapply the Send marker Box::from_raw(Box::into_raw(s) as *mut (dyn Any + Send)) }) } } #[stable(feature = "rust1", since = "1.0.0")] impl<T: fmt::Display + ?Sized> fmt::Display for Box<T> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { fmt::Display::fmt(&**self, f) } } #[stable(feature = "rust1", since = "1.0.0")] impl<T: fmt::Debug + ?Sized> fmt::Debug for Box<T> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { fmt::Debug::fmt(&**self, f) } } #[stable(feature = "rust1", since = "1.0.0")] impl<T: ?Sized> fmt::Pointer for Box<T> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { // It's not possible to extract the inner Uniq directly from the Box, // instead we cast it to a *const which aliases the Unique let ptr: *const T = &**self; fmt::Pointer::fmt(&ptr, f) } } #[stable(feature = "rust1", since = "1.0.0")] impl<T: ?Sized> Deref for Box<T> { type Target = T; fn deref(&self) -> &T { &**self } } #[stable(feature = "rust1", since = "1.0.0")] impl<T: ?Sized> DerefMut for Box<T> { fn deref_mut(&mut self) -> &mut T { &mut **self } } #[unstable(feature = "receiver_trait", issue = "0")] impl<T: ?Sized> Receiver for Box<T> {} #[stable(feature = "rust1", since = "1.0.0")] impl<I: Iterator + ?Sized> Iterator for Box<I> { type Item = I::Item; fn next(&mut self) -> Option<I::Item> { (**self).next() } fn size_hint(&self) -> (usize, Option<usize>) { (**self).size_hint() } fn nth(&mut self, n: usize) -> Option<I::Item> { (**self).nth(n) } } #[stable(feature = "rust1", since = "1.0.0")] impl<I: DoubleEndedIterator + ?Sized> DoubleEndedIterator for Box<I> { fn next_back(&mut self) -> Option<I::Item> { (**self).next_back() } } #[stable(feature = "rust1", since = "1.0.0")] impl<I: ExactSizeIterator + ?Sized> ExactSizeIterator for Box<I> { fn len(&self) -> usize { (**self).len() } fn is_empty(&self) -> bool { (**self).is_empty() } } #[stable(feature = "fused", since = "1.26.0")] impl<I: FusedIterator + ?Sized> FusedIterator for Box<I> {} /// `FnBox` is a version of the `FnOnce` intended for use with boxed /// closure objects. The idea is that where one would normally store a /// `Box<dyn FnOnce()>` in a data structure, you should use /// `Box<dyn FnBox()>`. The two traits behave essentially the same, except /// that a `FnBox` closure can only be called if it is boxed. (Note /// that `FnBox` may be deprecated in the future if `Box<dyn FnOnce()>` /// closures become directly usable.) /// /// # Examples /// /// Here is a snippet of code which creates a hashmap full of boxed /// once closures and then removes them one by one, calling each /// closure as it is removed. Note that the type of the closures /// stored in the map is `Box<dyn FnBox() -> i32>` and not `Box<dyn FnOnce() /// -> i32>`. /// /// ``` /// #![feature(fnbox)] /// /// use std::boxed::FnBox; /// use std::collections::HashMap; /// /// fn make_map() -> HashMap<i32, Box<dyn FnBox() -> i32>> { /// let mut map: HashMap<i32, Box<dyn FnBox() -> i32>> = HashMap::new(); /// map.insert(1, Box::new(|| 22)); /// map.insert(2, Box::new(|| 44)); /// map /// } /// /// fn main() { /// let mut map = make_map(); /// for i in &[1, 2] { /// let f = map.remove(&i).unwrap(); /// assert_eq!(f(), i * 22); /// } /// } /// ``` #[rustc_paren_sugar] #[unstable(feature = "fnbox", reason = "will be deprecated if and when `Box<FnOnce>` becomes usable", issue = "28796")] pub trait FnBox<A> { type Output; fn call_box(self: Box<Self>, args: A) -> Self::Output; } #[unstable(feature = "fnbox", reason = "will be deprecated if and when `Box<FnOnce>` becomes usable", issue = "28796")] impl<A, F> FnBox<A> for F where F: FnOnce<A> { type Output = F::Output; fn call_box(self: Box<F>, args: A) -> F::Output { self.call_once(args) } } #[unstable(feature = "fnbox", reason = "will be deprecated if and when `Box<FnOnce>` becomes usable", issue = "28796")] impl<A, R> FnOnce<A> for Box<dyn FnBox<A, Output = R> + '_> { type Output = R; extern "rust-call" fn call_once(self, args: A) -> R { self.call_box(args) } } #[unstable(feature = "fnbox", reason = "will be deprecated if and when `Box<FnOnce>` becomes usable", issue = "28796")] impl<A, R> FnOnce<A> for Box<dyn FnBox<A, Output = R> + Send + '_> { type Output = R; extern "rust-call" fn call_once(self, args: A) -> R { self.call_box(args) } } #[unstable(feature = "coerce_unsized", issue = "27732")] impl<T: ?Sized + Unsize<U>, U: ?Sized> CoerceUnsized<Box<U>> for Box<T> {} #[unstable(feature = "dispatch_from_dyn", issue = "0")] impl<T: ?Sized + Unsize<U>, U: ?Sized> DispatchFromDyn<Box<U>> for Box<T> {} #[stable(feature = "boxed_slice_from_iter", since = "1.32.0")] impl<A> FromIterator<A> for Box<[A]> { fn from_iter<T: IntoIterator<Item = A>>(iter: T) -> Self { iter.into_iter().collect::<Vec<_>>().into_boxed_slice() } } #[stable(feature = "box_slice_clone", since = "1.3.0")] impl<T: Clone> Clone for Box<[T]> { fn clone(&self) -> Self { let mut new = BoxBuilder { data: RawVec::with_capacity(self.len()), len: 0, }; let mut target = new.data.ptr(); for item in self.iter() { unsafe { ptr::write(target, item.clone()); target = target.offset(1); }; new.len += 1; } return unsafe { new.into_box() }; // Helper type for responding to panics correctly. struct BoxBuilder<T> { data: RawVec<T>, len: usize, } impl<T> BoxBuilder<T> { unsafe fn into_box(self) -> Box<[T]> { let raw = ptr::read(&self.data); mem::forget(self); raw.into_box() } } impl<T> Drop for BoxBuilder<T> { fn drop(&mut self) { let mut data = self.data.ptr(); let max = unsafe { data.add(self.len) }; while data != max { unsafe { ptr::read(data); data = data.offset(1); } } } } } } #[stable(feature = "box_borrow", since = "1.1.0")] impl<T: ?Sized> borrow::Borrow<T> for Box<T> { fn borrow(&self) -> &T { &**self } } #[stable(feature = "box_borrow", since = "1.1.0")] impl<T: ?Sized> borrow::BorrowMut<T> for Box<T> { fn borrow_mut(&mut self) -> &mut T { &mut **self } } #[stable(since = "1.5.0", feature = "smart_ptr_as_ref")] impl<T: ?Sized> AsRef<T> for Box<T> { fn as_ref(&self) -> &T { &**self } } #[stable(since = "1.5.0", feature = "smart_ptr_as_ref")] impl<T: ?Sized> AsMut<T> for Box<T> { fn as_mut(&mut self) -> &mut T { &mut **self } } /* Nota bene * * We could have chosen not to add this impl, and instead have written a * function of Pin<Box<T>> to Pin<T>. Such a function would not be sound, * because Box<T> implements Unpin even when T does not, as a result of * this impl. * * We chose this API instead of the alternative for a few reasons: * - Logically, it is helpful to understand pinning in regard to the * memory region being pointed to. For this reason none of the * standard library pointer types support projecting through a pin * (Box<T> is the only pointer type in std for which this would be * safe.) * - It is in practice very useful to have Box<T> be unconditionally * Unpin because of trait objects, for which the structural auto * trait functionality does not apply (e.g., Box<dyn Foo> would * otherwise not be Unpin). * * Another type with the same semantics as Box but only a conditional * implementation of `Unpin` (where `T: Unpin`) would be valid/safe, and * could have a method to project a Pin<T> from it. */ #[stable(feature = "pin", since = "1.33.0")] impl<T: ?Sized> Unpin for Box<T> { } #[unstable(feature = "generator_trait", issue = "43122")] impl<G: ?Sized + Generator + Unpin> Generator for Box<G> { type Yield = G::Yield; type Return = G::Return; fn resume(mut self: Pin<&mut Self>) -> GeneratorState<Self::Yield, Self::Return> { G::resume(Pin::new(&mut *self)) } } #[unstable(feature = "generator_trait", issue = "43122")] impl<G: ?Sized + Generator> Generator for Pin<Box<G>> { type Yield = G::Yield; type Return = G::Return; fn resume(mut self: Pin<&mut Self>) -> GeneratorState<Self::Yield, Self::Return> { G::resume((*self).as_mut()) } } #[unstable(feature = "futures_api", issue = "50547")] impl<F: ?Sized + Future + Unpin> Future for Box<F> { type Output = F::Output; fn poll(mut self: Pin<&mut Self>, waker: &Waker) -> Poll<Self::Output> { F::poll(Pin::new(&mut *self), waker) } }