1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983
//! A dynamically-sized view into a contiguous sequence, `[T]`. //! //! *[See also the slice primitive type](../../std/primitive.slice.html).* //! //! Slices are a view into a block of memory represented as a pointer and a //! length. //! //! ``` //! // slicing a Vec //! let vec = vec![1, 2, 3]; //! let int_slice = &vec[..]; //! // coercing an array to a slice //! let str_slice: &[&str] = &["one", "two", "three"]; //! ``` //! //! Slices are either mutable or shared. The shared slice type is `&[T]`, //! while the mutable slice type is `&mut [T]`, where `T` represents the element //! type. For example, you can mutate the block of memory that a mutable slice //! points to: //! //! ``` //! let x = &mut [1, 2, 3]; //! x[1] = 7; //! assert_eq!(x, &[1, 7, 3]); //! ``` //! //! Here are some of the things this module contains: //! //! ## Structs //! //! There are several structs that are useful for slices, such as [`Iter`], which //! represents iteration over a slice. //! //! ## Trait Implementations //! //! There are several implementations of common traits for slices. Some examples //! include: //! //! * [`Clone`] //! * [`Eq`], [`Ord`] - for slices whose element type are [`Eq`] or [`Ord`]. //! * [`Hash`] - for slices whose element type is [`Hash`]. //! //! ## Iteration //! //! The slices implement `IntoIterator`. The iterator yields references to the //! slice elements. //! //! ``` //! let numbers = &[0, 1, 2]; //! for n in numbers { //! println!("{} is a number!", n); //! } //! ``` //! //! The mutable slice yields mutable references to the elements: //! //! ``` //! let mut scores = [7, 8, 9]; //! for score in &mut scores[..] { //! *score += 1; //! } //! ``` //! //! This iterator yields mutable references to the slice's elements, so while //! the element type of the slice is `i32`, the element type of the iterator is //! `&mut i32`. //! //! * [`.iter`] and [`.iter_mut`] are the explicit methods to return the default //! iterators. //! * Further methods that return iterators are [`.split`], [`.splitn`], //! [`.chunks`], [`.windows`] and more. //! //! [`Clone`]: ../../std/clone/trait.Clone.html //! [`Eq`]: ../../std/cmp/trait.Eq.html //! [`Ord`]: ../../std/cmp/trait.Ord.html //! [`Iter`]: struct.Iter.html //! [`Hash`]: ../../std/hash/trait.Hash.html //! [`.iter`]: ../../std/primitive.slice.html#method.iter //! [`.iter_mut`]: ../../std/primitive.slice.html#method.iter_mut //! [`.split`]: ../../std/primitive.slice.html#method.split //! [`.splitn`]: ../../std/primitive.slice.html#method.splitn //! [`.chunks`]: ../../std/primitive.slice.html#method.chunks //! [`.windows`]: ../../std/primitive.slice.html#method.windows #![stable(feature = "rust1", since = "1.0.0")] // Many of the usings in this module are only used in the test configuration. // It's cleaner to just turn off the unused_imports warning than to fix them. #![cfg_attr(test, allow(unused_imports, dead_code))] use core::borrow::{Borrow, BorrowMut}; use core::cmp::Ordering::{self, Less}; use core::mem::{self, size_of}; use core::ptr; use core::{u8, u16, u32}; use crate::borrow::ToOwned; use crate::boxed::Box; use crate::vec::Vec; #[stable(feature = "rust1", since = "1.0.0")] pub use core::slice::{Chunks, Windows}; #[stable(feature = "rust1", since = "1.0.0")] pub use core::slice::{Iter, IterMut}; #[stable(feature = "rust1", since = "1.0.0")] pub use core::slice::{SplitMut, ChunksMut, Split}; #[stable(feature = "rust1", since = "1.0.0")] pub use core::slice::{SplitN, RSplitN, SplitNMut, RSplitNMut}; #[stable(feature = "slice_rsplit", since = "1.27.0")] pub use core::slice::{RSplit, RSplitMut}; #[stable(feature = "rust1", since = "1.0.0")] pub use core::slice::{from_raw_parts, from_raw_parts_mut}; #[stable(feature = "from_ref", since = "1.28.0")] pub use core::slice::{from_ref, from_mut}; #[stable(feature = "slice_get_slice", since = "1.28.0")] pub use core::slice::SliceIndex; #[stable(feature = "chunks_exact", since = "1.31.0")] pub use core::slice::{ChunksExact, ChunksExactMut}; #[stable(feature = "rchunks", since = "1.31.0")] pub use core::slice::{RChunks, RChunksMut, RChunksExact, RChunksExactMut}; //////////////////////////////////////////////////////////////////////////////// // Basic slice extension methods //////////////////////////////////////////////////////////////////////////////// // HACK(japaric) needed for the implementation of `vec!` macro during testing // NB see the hack module in this file for more details #[cfg(test)] pub use hack::into_vec; // HACK(japaric) needed for the implementation of `Vec::clone` during testing // NB see the hack module in this file for more details #[cfg(test)] pub use hack::to_vec; // HACK(japaric): With cfg(test) `impl [T]` is not available, these three // functions are actually methods that are in `impl [T]` but not in // `core::slice::SliceExt` - we need to supply these functions for the // `test_permutations` test mod hack { use core::mem; use crate::boxed::Box; use crate::vec::Vec; #[cfg(test)] use crate::string::ToString; pub fn into_vec<T>(mut b: Box<[T]>) -> Vec<T> { unsafe { let xs = Vec::from_raw_parts(b.as_mut_ptr(), b.len(), b.len()); mem::forget(b); xs } } #[inline] pub fn to_vec<T>(s: &[T]) -> Vec<T> where T: Clone { let mut vector = Vec::with_capacity(s.len()); vector.extend_from_slice(s); vector } } #[lang = "slice_alloc"] #[cfg(not(test))] impl<T> [T] { /// Sorts the slice. /// /// This sort is stable (i.e., does not reorder equal elements) and `O(n log n)` worst-case. /// /// When applicable, unstable sorting is preferred because it is generally faster than stable /// sorting and it doesn't allocate auxiliary memory. /// See [`sort_unstable`](#method.sort_unstable). /// /// # Current implementation /// /// The current algorithm is an adaptive, iterative merge sort inspired by /// [timsort](https://en.wikipedia.org/wiki/Timsort). /// It is designed to be very fast in cases where the slice is nearly sorted, or consists of /// two or more sorted sequences concatenated one after another. /// /// Also, it allocates temporary storage half the size of `self`, but for short slices a /// non-allocating insertion sort is used instead. /// /// # Examples /// /// ``` /// let mut v = [-5, 4, 1, -3, 2]; /// /// v.sort(); /// assert!(v == [-5, -3, 1, 2, 4]); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn sort(&mut self) where T: Ord { merge_sort(self, |a, b| a.lt(b)); } /// Sorts the slice with a comparator function. /// /// This sort is stable (i.e., does not reorder equal elements) and `O(n log n)` worst-case. /// /// The comparator function must define a total ordering for the elements in the slice. If /// the ordering is not total, the order of the elements is unspecified. An order is a /// total order if it is (for all `a`, `b` and `c`): /// /// * total and antisymmetric: exactly one of `a < b`, `a == b` or `a > b` is true, and /// * transitive, `a < b` and `b < c` implies `a < c`. The same must hold for both `==` and `>`. /// /// For example, while [`f64`] doesn't implement [`Ord`] because `NaN != NaN`, we can use /// `partial_cmp` as our sort function when we know the slice doesn't contain a `NaN`. /// /// ``` /// let mut floats = [5f64, 4.0, 1.0, 3.0, 2.0]; /// floats.sort_by(|a, b| a.partial_cmp(b).unwrap()); /// assert_eq!(floats, [1.0, 2.0, 3.0, 4.0, 5.0]); /// ``` /// /// When applicable, unstable sorting is preferred because it is generally faster than stable /// sorting and it doesn't allocate auxiliary memory. /// See [`sort_unstable_by`](#method.sort_unstable_by). /// /// # Current implementation /// /// The current algorithm is an adaptive, iterative merge sort inspired by /// [timsort](https://en.wikipedia.org/wiki/Timsort). /// It is designed to be very fast in cases where the slice is nearly sorted, or consists of /// two or more sorted sequences concatenated one after another. /// /// Also, it allocates temporary storage half the size of `self`, but for short slices a /// non-allocating insertion sort is used instead. /// /// # Examples /// /// ``` /// let mut v = [5, 4, 1, 3, 2]; /// v.sort_by(|a, b| a.cmp(b)); /// assert!(v == [1, 2, 3, 4, 5]); /// /// // reverse sorting /// v.sort_by(|a, b| b.cmp(a)); /// assert!(v == [5, 4, 3, 2, 1]); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn sort_by<F>(&mut self, mut compare: F) where F: FnMut(&T, &T) -> Ordering { merge_sort(self, |a, b| compare(a, b) == Less); } /// Sorts the slice with a key extraction function. /// /// This sort is stable (i.e., does not reorder equal elements) and `O(m n log(m n))` /// worst-case, where the key function is `O(m)`. /// /// For expensive key functions (e.g. functions that are not simple property accesses or /// basic operations), [`sort_by_cached_key`](#method.sort_by_cached_key) is likely to be /// significantly faster, as it does not recompute element keys. /// /// When applicable, unstable sorting is preferred because it is generally faster than stable /// sorting and it doesn't allocate auxiliary memory. /// See [`sort_unstable_by_key`](#method.sort_unstable_by_key). /// /// # Current implementation /// /// The current algorithm is an adaptive, iterative merge sort inspired by /// [timsort](https://en.wikipedia.org/wiki/Timsort). /// It is designed to be very fast in cases where the slice is nearly sorted, or consists of /// two or more sorted sequences concatenated one after another. /// /// Also, it allocates temporary storage half the size of `self`, but for short slices a /// non-allocating insertion sort is used instead. /// /// # Examples /// /// ``` /// let mut v = [-5i32, 4, 1, -3, 2]; /// /// v.sort_by_key(|k| k.abs()); /// assert!(v == [1, 2, -3, 4, -5]); /// ``` #[stable(feature = "slice_sort_by_key", since = "1.7.0")] #[inline] pub fn sort_by_key<K, F>(&mut self, mut f: F) where F: FnMut(&T) -> K, K: Ord { merge_sort(self, |a, b| f(a).lt(&f(b))); } /// Sorts the slice with a key extraction function. /// /// During sorting, the key function is called only once per element. /// /// This sort is stable (i.e., does not reorder equal elements) and `O(m n + n log n)` /// worst-case, where the key function is `O(m)`. /// /// For simple key functions (e.g., functions that are property accesses or /// basic operations), [`sort_by_key`](#method.sort_by_key) is likely to be /// faster. /// /// # Current implementation /// /// The current algorithm is based on [pattern-defeating quicksort][pdqsort] by Orson Peters, /// which combines the fast average case of randomized quicksort with the fast worst case of /// heapsort, while achieving linear time on slices with certain patterns. It uses some /// randomization to avoid degenerate cases, but with a fixed seed to always provide /// deterministic behavior. /// /// In the worst case, the algorithm allocates temporary storage in a `Vec<(K, usize)>` the /// length of the slice. /// /// # Examples /// /// ``` /// let mut v = [-5i32, 4, 32, -3, 2]; /// /// v.sort_by_cached_key(|k| k.to_string()); /// assert!(v == [-3, -5, 2, 32, 4]); /// ``` /// /// [pdqsort]: https://github.com/orlp/pdqsort #[stable(feature = "slice_sort_by_cached_key", since = "1.34.0")] #[inline] pub fn sort_by_cached_key<K, F>(&mut self, f: F) where F: FnMut(&T) -> K, K: Ord { // Helper macro for indexing our vector by the smallest possible type, to reduce allocation. macro_rules! sort_by_key { ($t:ty, $slice:ident, $f:ident) => ({ let mut indices: Vec<_> = $slice.iter().map($f).enumerate().map(|(i, k)| (k, i as $t)).collect(); // The elements of `indices` are unique, as they are indexed, so any sort will be // stable with respect to the original slice. We use `sort_unstable` here because // it requires less memory allocation. indices.sort_unstable(); for i in 0..$slice.len() { let mut index = indices[i].1; while (index as usize) < i { index = indices[index as usize].1; } indices[i].1 = index; $slice.swap(i, index as usize); } }) } let sz_u8 = mem::size_of::<(K, u8)>(); let sz_u16 = mem::size_of::<(K, u16)>(); let sz_u32 = mem::size_of::<(K, u32)>(); let sz_usize = mem::size_of::<(K, usize)>(); let len = self.len(); if len < 2 { return } if sz_u8 < sz_u16 && len <= ( u8::MAX as usize) { return sort_by_key!( u8, self, f) } if sz_u16 < sz_u32 && len <= (u16::MAX as usize) { return sort_by_key!(u16, self, f) } if sz_u32 < sz_usize && len <= (u32::MAX as usize) { return sort_by_key!(u32, self, f) } sort_by_key!(usize, self, f) } /// Copies `self` into a new `Vec`. /// /// # Examples /// /// ``` /// let s = [10, 40, 30]; /// let x = s.to_vec(); /// // Here, `s` and `x` can be modified independently. /// ``` #[rustc_conversion_suggestion] #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn to_vec(&self) -> Vec<T> where T: Clone { // NB see hack module in this file hack::to_vec(self) } /// Converts `self` into a vector without clones or allocation. /// /// The resulting vector can be converted back into a box via /// `Vec<T>`'s `into_boxed_slice` method. /// /// # Examples /// /// ``` /// let s: Box<[i32]> = Box::new([10, 40, 30]); /// let x = s.into_vec(); /// // `s` cannot be used anymore because it has been converted into `x`. /// /// assert_eq!(x, vec![10, 40, 30]); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn into_vec(self: Box<Self>) -> Vec<T> { // NB see hack module in this file hack::into_vec(self) } /// Creates a vector by repeating a slice `n` times. /// /// # Panics /// /// This function will panic if the capacity would overflow. /// /// # Examples /// /// Basic usage: /// /// ``` /// #![feature(repeat_generic_slice)] /// /// fn main() { /// assert_eq!([1, 2].repeat(3), vec![1, 2, 1, 2, 1, 2]); /// } /// ``` /// /// A panic upon overflow: /// /// ```should_panic /// #![feature(repeat_generic_slice)] /// fn main() { /// // this will panic at runtime /// b"0123456789abcdef".repeat(usize::max_value()); /// } /// ``` #[unstable(feature = "repeat_generic_slice", reason = "it's on str, why not on slice?", issue = "48784")] pub fn repeat(&self, n: usize) -> Vec<T> where T: Copy { if n == 0 { return Vec::new(); } // If `n` is larger than zero, it can be split as // `n = 2^expn + rem (2^expn > rem, expn >= 0, rem >= 0)`. // `2^expn` is the number represented by the leftmost '1' bit of `n`, // and `rem` is the remaining part of `n`. // Using `Vec` to access `set_len()`. let mut buf = Vec::with_capacity(self.len().checked_mul(n).expect("capacity overflow")); // `2^expn` repetition is done by doubling `buf` `expn`-times. buf.extend(self); { let mut m = n >> 1; // If `m > 0`, there are remaining bits up to the leftmost '1'. while m > 0 { // `buf.extend(buf)`: unsafe { ptr::copy_nonoverlapping( buf.as_ptr(), (buf.as_mut_ptr() as *mut T).add(buf.len()), buf.len(), ); // `buf` has capacity of `self.len() * n`. let buf_len = buf.len(); buf.set_len(buf_len * 2); } m >>= 1; } } // `rem` (`= n - 2^expn`) repetition is done by copying // first `rem` repetitions from `buf` itself. let rem_len = self.len() * n - buf.len(); // `self.len() * rem` if rem_len > 0 { // `buf.extend(buf[0 .. rem_len])`: unsafe { // This is non-overlapping since `2^expn > rem`. ptr::copy_nonoverlapping( buf.as_ptr(), (buf.as_mut_ptr() as *mut T).add(buf.len()), rem_len, ); // `buf.len() + rem_len` equals to `buf.capacity()` (`= self.len() * n`). let buf_cap = buf.capacity(); buf.set_len(buf_cap); } } buf } } #[lang = "slice_u8_alloc"] #[cfg(not(test))] impl [u8] { /// Returns a vector containing a copy of this slice where each byte /// is mapped to its ASCII upper case equivalent. /// /// ASCII letters 'a' to 'z' are mapped to 'A' to 'Z', /// but non-ASCII letters are unchanged. /// /// To uppercase the value in-place, use [`make_ascii_uppercase`]. /// /// [`make_ascii_uppercase`]: #method.make_ascii_uppercase #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")] #[inline] pub fn to_ascii_uppercase(&self) -> Vec<u8> { let mut me = self.to_vec(); me.make_ascii_uppercase(); me } /// Returns a vector containing a copy of this slice where each byte /// is mapped to its ASCII lower case equivalent. /// /// ASCII letters 'A' to 'Z' are mapped to 'a' to 'z', /// but non-ASCII letters are unchanged. /// /// To lowercase the value in-place, use [`make_ascii_lowercase`]. /// /// [`make_ascii_lowercase`]: #method.make_ascii_lowercase #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")] #[inline] pub fn to_ascii_lowercase(&self) -> Vec<u8> { let mut me = self.to_vec(); me.make_ascii_lowercase(); me } } //////////////////////////////////////////////////////////////////////////////// // Extension traits for slices over specific kinds of data //////////////////////////////////////////////////////////////////////////////// #[unstable(feature = "slice_concat_ext", reason = "trait should not have to exist", issue = "27747")] /// An extension trait for concatenating slices /// /// While this trait is unstable, the methods are stable. `SliceConcatExt` is /// included in the [standard library prelude], so you can use [`join()`] and /// [`concat()`] as if they existed on `[T]` itself. /// /// [standard library prelude]: ../../std/prelude/index.html /// [`join()`]: #tymethod.join /// [`concat()`]: #tymethod.concat pub trait SliceConcatExt<T: ?Sized> { #[unstable(feature = "slice_concat_ext", reason = "trait should not have to exist", issue = "27747")] /// The resulting type after concatenation type Output; /// Flattens a slice of `T` into a single value `Self::Output`. /// /// # Examples /// /// ``` /// assert_eq!(["hello", "world"].concat(), "helloworld"); /// assert_eq!([[1, 2], [3, 4]].concat(), [1, 2, 3, 4]); /// ``` #[stable(feature = "rust1", since = "1.0.0")] fn concat(&self) -> Self::Output; /// Flattens a slice of `T` into a single value `Self::Output`, placing a /// given separator between each. /// /// # Examples /// /// ``` /// assert_eq!(["hello", "world"].join(" "), "hello world"); /// assert_eq!([[1, 2], [3, 4]].join(&0), [1, 2, 0, 3, 4]); /// ``` #[stable(feature = "rename_connect_to_join", since = "1.3.0")] fn join(&self, sep: &T) -> Self::Output; #[stable(feature = "rust1", since = "1.0.0")] #[rustc_deprecated(since = "1.3.0", reason = "renamed to join")] fn connect(&self, sep: &T) -> Self::Output; } #[unstable(feature = "slice_concat_ext", reason = "trait should not have to exist", issue = "27747")] impl<T: Clone, V: Borrow<[T]>> SliceConcatExt<T> for [V] { type Output = Vec<T>; fn concat(&self) -> Vec<T> { let size = self.iter().map(|slice| slice.borrow().len()).sum(); let mut result = Vec::with_capacity(size); for v in self { result.extend_from_slice(v.borrow()) } result } fn join(&self, sep: &T) -> Vec<T> { let mut iter = self.iter(); let first = match iter.next() { Some(first) => first, None => return vec![], }; let size = self.iter().map(|slice| slice.borrow().len()).sum::<usize>() + self.len() - 1; let mut result = Vec::with_capacity(size); result.extend_from_slice(first.borrow()); for v in iter { result.push(sep.clone()); result.extend_from_slice(v.borrow()) } result } fn connect(&self, sep: &T) -> Vec<T> { self.join(sep) } } //////////////////////////////////////////////////////////////////////////////// // Standard trait implementations for slices //////////////////////////////////////////////////////////////////////////////// #[stable(feature = "rust1", since = "1.0.0")] impl<T> Borrow<[T]> for Vec<T> { fn borrow(&self) -> &[T] { &self[..] } } #[stable(feature = "rust1", since = "1.0.0")] impl<T> BorrowMut<[T]> for Vec<T> { fn borrow_mut(&mut self) -> &mut [T] { &mut self[..] } } #[stable(feature = "rust1", since = "1.0.0")] impl<T: Clone> ToOwned for [T] { type Owned = Vec<T>; #[cfg(not(test))] fn to_owned(&self) -> Vec<T> { self.to_vec() } #[cfg(test)] fn to_owned(&self) -> Vec<T> { hack::to_vec(self) } fn clone_into(&self, target: &mut Vec<T>) { // drop anything in target that will not be overwritten target.truncate(self.len()); let len = target.len(); // reuse the contained values' allocations/resources. target.clone_from_slice(&self[..len]); // target.len <= self.len due to the truncate above, so the // slice here is always in-bounds. target.extend_from_slice(&self[len..]); } } //////////////////////////////////////////////////////////////////////////////// // Sorting //////////////////////////////////////////////////////////////////////////////// /// Inserts `v[0]` into pre-sorted sequence `v[1..]` so that whole `v[..]` becomes sorted. /// /// This is the integral subroutine of insertion sort. fn insert_head<T, F>(v: &mut [T], is_less: &mut F) where F: FnMut(&T, &T) -> bool { if v.len() >= 2 && is_less(&v[1], &v[0]) { unsafe { // There are three ways to implement insertion here: // // 1. Swap adjacent elements until the first one gets to its final destination. // However, this way we copy data around more than is necessary. If elements are big // structures (costly to copy), this method will be slow. // // 2. Iterate until the right place for the first element is found. Then shift the // elements succeeding it to make room for it and finally place it into the // remaining hole. This is a good method. // // 3. Copy the first element into a temporary variable. Iterate until the right place // for it is found. As we go along, copy every traversed element into the slot // preceding it. Finally, copy data from the temporary variable into the remaining // hole. This method is very good. Benchmarks demonstrated slightly better // performance than with the 2nd method. // // All methods were benchmarked, and the 3rd showed best results. So we chose that one. let mut tmp = mem::ManuallyDrop::new(ptr::read(&v[0])); // Intermediate state of the insertion process is always tracked by `hole`, which // serves two purposes: // 1. Protects integrity of `v` from panics in `is_less`. // 2. Fills the remaining hole in `v` in the end. // // Panic safety: // // If `is_less` panics at any point during the process, `hole` will get dropped and // fill the hole in `v` with `tmp`, thus ensuring that `v` still holds every object it // initially held exactly once. let mut hole = InsertionHole { src: &mut *tmp, dest: &mut v[1], }; ptr::copy_nonoverlapping(&v[1], &mut v[0], 1); for i in 2..v.len() { if !is_less(&v[i], &*tmp) { break; } ptr::copy_nonoverlapping(&v[i], &mut v[i - 1], 1); hole.dest = &mut v[i]; } // `hole` gets dropped and thus copies `tmp` into the remaining hole in `v`. } } // When dropped, copies from `src` into `dest`. struct InsertionHole<T> { src: *mut T, dest: *mut T, } impl<T> Drop for InsertionHole<T> { fn drop(&mut self) { unsafe { ptr::copy_nonoverlapping(self.src, self.dest, 1); } } } } /// Merges non-decreasing runs `v[..mid]` and `v[mid..]` using `buf` as temporary storage, and /// stores the result into `v[..]`. /// /// # Safety /// /// The two slices must be non-empty and `mid` must be in bounds. Buffer `buf` must be long enough /// to hold a copy of the shorter slice. Also, `T` must not be a zero-sized type. unsafe fn merge<T, F>(v: &mut [T], mid: usize, buf: *mut T, is_less: &mut F) where F: FnMut(&T, &T) -> bool { let len = v.len(); let v = v.as_mut_ptr(); let v_mid = v.add(mid); let v_end = v.add(len); // The merge process first copies the shorter run into `buf`. Then it traces the newly copied // run and the longer run forwards (or backwards), comparing their next unconsumed elements and // copying the lesser (or greater) one into `v`. // // As soon as the shorter run is fully consumed, the process is done. If the longer run gets // consumed first, then we must copy whatever is left of the shorter run into the remaining // hole in `v`. // // Intermediate state of the process is always tracked by `hole`, which serves two purposes: // 1. Protects integrity of `v` from panics in `is_less`. // 2. Fills the remaining hole in `v` if the longer run gets consumed first. // // Panic safety: // // If `is_less` panics at any point during the process, `hole` will get dropped and fill the // hole in `v` with the unconsumed range in `buf`, thus ensuring that `v` still holds every // object it initially held exactly once. let mut hole; if mid <= len - mid { // The left run is shorter. ptr::copy_nonoverlapping(v, buf, mid); hole = MergeHole { start: buf, end: buf.add(mid), dest: v, }; // Initially, these pointers point to the beginnings of their arrays. let left = &mut hole.start; let mut right = v_mid; let out = &mut hole.dest; while *left < hole.end && right < v_end { // Consume the lesser side. // If equal, prefer the left run to maintain stability. let to_copy = if is_less(&*right, &**left) { get_and_increment(&mut right) } else { get_and_increment(left) }; ptr::copy_nonoverlapping(to_copy, get_and_increment(out), 1); } } else { // The right run is shorter. ptr::copy_nonoverlapping(v_mid, buf, len - mid); hole = MergeHole { start: buf, end: buf.add(len - mid), dest: v_mid, }; // Initially, these pointers point past the ends of their arrays. let left = &mut hole.dest; let right = &mut hole.end; let mut out = v_end; while v < *left && buf < *right { // Consume the greater side. // If equal, prefer the right run to maintain stability. let to_copy = if is_less(&*right.offset(-1), &*left.offset(-1)) { decrement_and_get(left) } else { decrement_and_get(right) }; ptr::copy_nonoverlapping(to_copy, decrement_and_get(&mut out), 1); } } // Finally, `hole` gets dropped. If the shorter run was not fully consumed, whatever remains of // it will now be copied into the hole in `v`. unsafe fn get_and_increment<T>(ptr: &mut *mut T) -> *mut T { let old = *ptr; *ptr = ptr.offset(1); old } unsafe fn decrement_and_get<T>(ptr: &mut *mut T) -> *mut T { *ptr = ptr.offset(-1); *ptr } // When dropped, copies the range `start..end` into `dest..`. struct MergeHole<T> { start: *mut T, end: *mut T, dest: *mut T, } impl<T> Drop for MergeHole<T> { fn drop(&mut self) { // `T` is not a zero-sized type, so it's okay to divide by its size. let len = (self.end as usize - self.start as usize) / mem::size_of::<T>(); unsafe { ptr::copy_nonoverlapping(self.start, self.dest, len); } } } } /// This merge sort borrows some (but not all) ideas from TimSort, which is described in detail /// [here](http://svn.python.org/projects/python/trunk/Objects/listsort.txt). /// /// The algorithm identifies strictly descending and non-descending subsequences, which are called /// natural runs. There is a stack of pending runs yet to be merged. Each newly found run is pushed /// onto the stack, and then some pairs of adjacent runs are merged until these two invariants are /// satisfied: /// /// 1. for every `i` in `1..runs.len()`: `runs[i - 1].len > runs[i].len` /// 2. for every `i` in `2..runs.len()`: `runs[i - 2].len > runs[i - 1].len + runs[i].len` /// /// The invariants ensure that the total running time is `O(n log n)` worst-case. fn merge_sort<T, F>(v: &mut [T], mut is_less: F) where F: FnMut(&T, &T) -> bool { // Slices of up to this length get sorted using insertion sort. const MAX_INSERTION: usize = 20; // Very short runs are extended using insertion sort to span at least this many elements. const MIN_RUN: usize = 10; // Sorting has no meaningful behavior on zero-sized types. if size_of::<T>() == 0 { return; } let len = v.len(); // Short arrays get sorted in-place via insertion sort to avoid allocations. if len <= MAX_INSERTION { if len >= 2 { for i in (0..len-1).rev() { insert_head(&mut v[i..], &mut is_less); } } return; } // Allocate a buffer to use as scratch memory. We keep the length 0 so we can keep in it // shallow copies of the contents of `v` without risking the dtors running on copies if // `is_less` panics. When merging two sorted runs, this buffer holds a copy of the shorter run, // which will always have length at most `len / 2`. let mut buf = Vec::with_capacity(len / 2); // In order to identify natural runs in `v`, we traverse it backwards. That might seem like a // strange decision, but consider the fact that merges more often go in the opposite direction // (forwards). According to benchmarks, merging forwards is slightly faster than merging // backwards. To conclude, identifying runs by traversing backwards improves performance. let mut runs = vec![]; let mut end = len; while end > 0 { // Find the next natural run, and reverse it if it's strictly descending. let mut start = end - 1; if start > 0 { start -= 1; unsafe { if is_less(v.get_unchecked(start + 1), v.get_unchecked(start)) { while start > 0 && is_less(v.get_unchecked(start), v.get_unchecked(start - 1)) { start -= 1; } v[start..end].reverse(); } else { while start > 0 && !is_less(v.get_unchecked(start), v.get_unchecked(start - 1)) { start -= 1; } } } } // Insert some more elements into the run if it's too short. Insertion sort is faster than // merge sort on short sequences, so this significantly improves performance. while start > 0 && end - start < MIN_RUN { start -= 1; insert_head(&mut v[start..end], &mut is_less); } // Push this run onto the stack. runs.push(Run { start, len: end - start, }); end = start; // Merge some pairs of adjacent runs to satisfy the invariants. while let Some(r) = collapse(&runs) { let left = runs[r + 1]; let right = runs[r]; unsafe { merge(&mut v[left.start .. right.start + right.len], left.len, buf.as_mut_ptr(), &mut is_less); } runs[r] = Run { start: left.start, len: left.len + right.len, }; runs.remove(r + 1); } } // Finally, exactly one run must remain in the stack. debug_assert!(runs.len() == 1 && runs[0].start == 0 && runs[0].len == len); // Examines the stack of runs and identifies the next pair of runs to merge. More specifically, // if `Some(r)` is returned, that means `runs[r]` and `runs[r + 1]` must be merged next. If the // algorithm should continue building a new run instead, `None` is returned. // // TimSort is infamous for its buggy implementations, as described here: // http://envisage-project.eu/timsort-specification-and-verification/ // // The gist of the story is: we must enforce the invariants on the top four runs on the stack. // Enforcing them on just top three is not sufficient to ensure that the invariants will still // hold for *all* runs in the stack. // // This function correctly checks invariants for the top four runs. Additionally, if the top // run starts at index 0, it will always demand a merge operation until the stack is fully // collapsed, in order to complete the sort. #[inline] fn collapse(runs: &[Run]) -> Option<usize> { let n = runs.len(); if n >= 2 && (runs[n - 1].start == 0 || runs[n - 2].len <= runs[n - 1].len || (n >= 3 && runs[n - 3].len <= runs[n - 2].len + runs[n - 1].len) || (n >= 4 && runs[n - 4].len <= runs[n - 3].len + runs[n - 2].len)) { if n >= 3 && runs[n - 3].len < runs[n - 1].len { Some(n - 3) } else { Some(n - 2) } } else { None } } #[derive(Clone, Copy)] struct Run { start: usize, len: usize, } }