Release: 1.0.12 | Release Date: February 15, 2016

SQLAlchemy 1.0 Documentation

Session API

Session and sessionmaker()

class sqlalchemy.orm.session.sessionmaker(bind=None, class_=<class 'sqlalchemy.orm.session.Session'>, autoflush=True, autocommit=False, expire_on_commit=True, info=None, **kw)

Bases: sqlalchemy.orm.session._SessionClassMethods

A configurable Session factory.

The sessionmaker factory generates new Session objects when called, creating them given the configurational arguments established here.

e.g.:

# global scope
Session = sessionmaker(autoflush=False)

# later, in a local scope, create and use a session:
sess = Session()

Any keyword arguments sent to the constructor itself will override the “configured” keywords:

Session = sessionmaker()

# bind an individual session to a connection
sess = Session(bind=connection)

The class also includes a method configure(), which can be used to specify additional keyword arguments to the factory, which will take effect for subsequent Session objects generated. This is usually used to associate one or more Engine objects with an existing sessionmaker factory before it is first used:

# application starts
Session = sessionmaker()

# ... later
engine = create_engine('sqlite:///foo.db')
Session.configure(bind=engine)

sess = Session()
__call__(**local_kw)

Produce a new Session object using the configuration established in this sessionmaker.

In Python, the __call__ method is invoked on an object when it is “called” in the same way as a function:

Session = sessionmaker()
session = Session()  # invokes sessionmaker.__call__()
__init__(bind=None, class_=<class 'sqlalchemy.orm.session.Session'>, autoflush=True, autocommit=False, expire_on_commit=True, info=None, **kw)

Construct a new sessionmaker.

All arguments here except for class_ correspond to arguments accepted by Session directly. See the Session.__init__() docstring for more details on parameters.

Parameters:
  • bind – a Engine or other Connectable with which newly created Session objects will be associated.
  • class_ – class to use in order to create new Session objects. Defaults to Session.
  • autoflush – The autoflush setting to use with newly created Session objects.
  • autocommit – The autocommit setting to use with newly created Session objects.
  • expire_on_commit=True – the expire_on_commit setting to use with newly created Session objects.
  • info

    optional dictionary of information that will be available via Session.info. Note this dictionary is updated, not replaced, when the info parameter is specified to the specific Session construction operation.

    New in version 0.9.0.

  • **kw – all other keyword arguments are passed to the constructor of newly created Session objects.
close_all()
inherited from the close_all() method of _SessionClassMethods

Close all sessions in memory.

configure(**new_kw)

(Re)configure the arguments for this sessionmaker.

e.g.:

Session = sessionmaker()

Session.configure(bind=create_engine('sqlite://'))
identity_key(*args, **kwargs)
inherited from the identity_key() method of _SessionClassMethods

Return an identity key.

This is an alias of util.identity_key().

object_session(instance)
inherited from the object_session() method of _SessionClassMethods

Return the Session to which an object belongs.

This is an alias of object_session().

class sqlalchemy.orm.session.Session(bind=None, autoflush=True, expire_on_commit=True, _enable_transaction_accounting=True, autocommit=False, twophase=False, weak_identity_map=True, binds=None, extension=None, info=None, query_cls=<class 'sqlalchemy.orm.query.Query'>)

Bases: sqlalchemy.orm.session._SessionClassMethods

Manages persistence operations for ORM-mapped objects.

The Session’s usage paradigm is described at Using the Session.

__init__(bind=None, autoflush=True, expire_on_commit=True, _enable_transaction_accounting=True, autocommit=False, twophase=False, weak_identity_map=True, binds=None, extension=None, info=None, query_cls=<class 'sqlalchemy.orm.query.Query'>)

Construct a new Session.

See also the sessionmaker function which is used to generate a Session-producing callable with a given set of arguments.

Parameters:
  • autocommit

    Warning

    The autocommit flag is not for general use, and if it is used, queries should only be invoked within the span of a Session.begin() / Session.commit() pair. Executing queries outside of a demarcated transaction is a legacy mode of usage, and can in some cases lead to concurrent connection checkouts.

    Defaults to False. When True, the Session does not keep a persistent transaction running, and will acquire connections from the engine on an as-needed basis, returning them immediately after their use. Flushes will begin and commit (or possibly rollback) their own transaction if no transaction is present. When using this mode, the Session.begin() method is used to explicitly start transactions.

    See also

    Autocommit Mode

  • autoflush – When True, all query operations will issue a flush() call to this Session before proceeding. This is a convenience feature so that flush() need not be called repeatedly in order for database queries to retrieve results. It’s typical that autoflush is used in conjunction with autocommit=False. In this scenario, explicit calls to flush() are rarely needed; you usually only need to call commit() (which flushes) to finalize changes.
  • bind – An optional Engine or Connection to which this Session should be bound. When specified, all SQL operations performed by this session will execute via this connectable.
  • binds
    An optional dictionary which contains more granular
    “bind” information than the bind parameter provides. This dictionary can map individual :class`.Table` instances as well as Mapper instances to individual Engine or Connection objects. Operations which proceed relative to a particular Mapper will consult this dictionary for the direct Mapper instance as well as the mapper’s mapped_table attribute in order to locate a connectable to use. The full resolution is described in the Session.get_bind(). Usage looks like:
    Session = sessionmaker(binds={
        SomeMappedClass: create_engine('postgresql://engine1'),
        somemapper: create_engine('postgresql://engine2'),
        some_table: create_engine('postgresql://engine3'),
        })

    Also see the Session.bind_mapper() and Session.bind_table() methods.

  • class_ – Specify an alternate class other than sqlalchemy.orm.session.Session which should be used by the returned class. This is the only argument that is local to the sessionmaker function, and is not sent directly to the constructor for Session.
  • _enable_transaction_accounting – Defaults to True. A legacy-only flag which when False disables all 0.5-style object accounting on transaction boundaries, including auto-expiry of instances on rollback and commit, maintenance of the “new” and “deleted” lists upon rollback, and autoflush of pending changes upon begin(), all of which are interdependent.
  • expire_on_commit – Defaults to True. When True, all instances will be fully expired after each commit(), so that all attribute/object access subsequent to a completed transaction will load from the most recent database state.
  • extension – An optional SessionExtension instance, or a list of such instances, which will receive pre- and post- commit and flush events, as well as a post-rollback event. Deprecated. Please see SessionEvents.
  • info

    optional dictionary of arbitrary data to be associated with this Session. Is available via the Session.info attribute. Note the dictionary is copied at construction time so that modifications to the per- Session dictionary will be local to that Session.

    New in version 0.9.0.

  • query_cls – Class which should be used to create new Query objects, as returned by the query() method. Defaults to Query.
  • twophase – When True, all transactions will be started as a “two phase” transaction, i.e. using the “two phase” semantics of the database in use along with an XID. During a commit(), after flush() has been issued for all attached databases, the prepare() method on each database’s TwoPhaseTransaction will be called. This allows each database to roll back the entire transaction, before each transaction is committed.
  • weak_identity_map – Defaults to True - when set to False, objects placed in the Session will be strongly referenced until explicitly removed or the Session is closed. Deprecated - this option is present to allow compatibility with older applications, but it is recommended that strong references to objects be maintained by the calling application externally to the Session itself, to the extent that is required by the application.
add(instance, _warn=True)

Place an object in the Session.

Its state will be persisted to the database on the next flush operation.

Repeated calls to add() will be ignored. The opposite of add() is expunge().

add_all(instances)

Add the given collection of instances to this Session.

begin(subtransactions=False, nested=False)

Begin a transaction on this Session.

If this Session is already within a transaction, either a plain transaction or nested transaction, an error is raised, unless subtransactions=True or nested=True is specified.

The subtransactions=True flag indicates that this begin() can create a subtransaction if a transaction is already in progress. For documentation on subtransactions, please see Using Subtransactions with Autocommit.

The nested flag begins a SAVEPOINT transaction and is equivalent to calling begin_nested(). For documentation on SAVEPOINT transactions, please see Using SAVEPOINT.

begin_nested()

Begin a nested transaction on this Session.

The target database(s) must support SQL SAVEPOINTs or a SQLAlchemy-supported vendor implementation of the idea.

For documentation on SAVEPOINT transactions, please see Using SAVEPOINT.

bind_mapper(mapper, bind)

Associate a Mapper with a “bind”, e.g. a Engine or Connection.

The given mapper is added to a lookup used by the Session.get_bind() method.

bind_table(table, bind)

Associate a Table with a “bind”, e.g. a Engine or Connection.

The given mapper is added to a lookup used by the Session.get_bind() method.

bulk_insert_mappings(mapper, mappings, return_defaults=False)

Perform a bulk insert of the given list of mapping dictionaries.

The bulk insert feature allows plain Python dictionaries to be used as the source of simple INSERT operations which can be more easily grouped together into higher performing “executemany” operations. Using dictionaries, there is no “history” or session state management features in use, reducing latency when inserting large numbers of simple rows.

The values within the dictionaries as given are typically passed without modification into Core Insert() constructs, after organizing the values within them across the tables to which the given mapper is mapped.

New in version 1.0.0.

Warning

The bulk insert feature allows for a lower-latency INSERT of rows at the expense of most other unit-of-work features. Features such as object management, relationship handling, and SQL clause support are silently omitted in favor of raw INSERT of records.

Please read the list of caveats at Bulk Operations before using this method, and fully test and confirm the functionality of all code developed using these systems.

Parameters:
  • mapper – a mapped class, or the actual Mapper object, representing the single kind of object represented within the mapping list.
  • mappings – a list of dictionaries, each one containing the state of the mapped row to be inserted, in terms of the attribute names on the mapped class. If the mapping refers to multiple tables, such as a joined-inheritance mapping, each dictionary must contain all keys to be populated into all tables.
  • return_defaults – when True, rows that are missing values which generate defaults, namely integer primary key defaults and sequences, will be inserted one at a time, so that the primary key value is available. In particular this will allow joined-inheritance and other multi-table mappings to insert correctly without the need to provide primary key values ahead of time; however, Session.bulk_insert_mappings.return_defaults greatly reduces the performance gains of the method overall. If the rows to be inserted only refer to a single table, then there is no reason this flag should be set as the returned default information is not used.
bulk_save_objects(objects, return_defaults=False, update_changed_only=True)

Perform a bulk save of the given list of objects.

The bulk save feature allows mapped objects to be used as the source of simple INSERT and UPDATE operations which can be more easily grouped together into higher performing “executemany” operations; the extraction of data from the objects is also performed using a lower-latency process that ignores whether or not attributes have actually been modified in the case of UPDATEs, and also ignores SQL expressions.

The objects as given are not added to the session and no additional state is established on them, unless the return_defaults flag is also set, in which case primary key attributes and server-side default values will be populated.

New in version 1.0.0.

Warning

The bulk save feature allows for a lower-latency INSERT/UPDATE of rows at the expense of most other unit-of-work features. Features such as object management, relationship handling, and SQL clause support are silently omitted in favor of raw INSERT/UPDATES of records.

Please read the list of caveats at Bulk Operations before using this method, and fully test and confirm the functionality of all code developed using these systems.

Parameters:
  • objects

    a list of mapped object instances. The mapped objects are persisted as is, and are not associated with the Session afterwards.

    For each object, whether the object is sent as an INSERT or an UPDATE is dependent on the same rules used by the Session in traditional operation; if the object has the InstanceState.key attribute set, then the object is assumed to be “detached” and will result in an UPDATE. Otherwise, an INSERT is used.

    In the case of an UPDATE, statements are grouped based on which attributes have changed, and are thus to be the subject of each SET clause. If update_changed_only is False, then all attributes present within each object are applied to the UPDATE statement, which may help in allowing the statements to be grouped together into a larger executemany(), and will also reduce the overhead of checking history on attributes.

  • return_defaults – when True, rows that are missing values which generate defaults, namely integer primary key defaults and sequences, will be inserted one at a time, so that the primary key value is available. In particular this will allow joined-inheritance and other multi-table mappings to insert correctly without the need to provide primary key values ahead of time; however, Session.bulk_save_objects.return_defaults greatly reduces the performance gains of the method overall.
  • update_changed_only – when True, UPDATE statements are rendered based on those attributes in each state that have logged changes. When False, all attributes present are rendered into the SET clause with the exception of primary key attributes.
bulk_update_mappings(mapper, mappings)

Perform a bulk update of the given list of mapping dictionaries.

The bulk update feature allows plain Python dictionaries to be used as the source of simple UPDATE operations which can be more easily grouped together into higher performing “executemany” operations. Using dictionaries, there is no “history” or session state management features in use, reducing latency when updating large numbers of simple rows.

New in version 1.0.0.

Warning

The bulk update feature allows for a lower-latency UPDATE of rows at the expense of most other unit-of-work features. Features such as object management, relationship handling, and SQL clause support are silently omitted in favor of raw UPDATES of records.

Please read the list of caveats at Bulk Operations before using this method, and fully test and confirm the functionality of all code developed using these systems.

Parameters:
  • mapper – a mapped class, or the actual Mapper object, representing the single kind of object represented within the mapping list.
  • mappings – a list of dictionaries, each one containing the state of the mapped row to be updated, in terms of the attribute names on the mapped class. If the mapping refers to multiple tables, such as a joined-inheritance mapping, each dictionary may contain keys corresponding to all tables. All those keys which are present and are not part of the primary key are applied to the SET clause of the UPDATE statement; the primary key values, which are required, are applied to the WHERE clause.
close()

Close this Session.

This clears all items and ends any transaction in progress.

If this session were created with autocommit=False, a new transaction is immediately begun. Note that this new transaction does not use any connection resources until they are first needed.

close_all()
inherited from the close_all() method of _SessionClassMethods

Close all sessions in memory.

commit()

Flush pending changes and commit the current transaction.

If no transaction is in progress, this method raises an InvalidRequestError.

By default, the Session also expires all database loaded state on all ORM-managed attributes after transaction commit. This so that subsequent operations load the most recent data from the database. This behavior can be disabled using the expire_on_commit=False option to sessionmaker or the Session constructor.

If a subtransaction is in effect (which occurs when begin() is called multiple times), the subtransaction will be closed, and the next call to commit() will operate on the enclosing transaction.

When using the Session in its default mode of autocommit=False, a new transaction will be begun immediately after the commit, but note that the newly begun transaction does not use any connection resources until the first SQL is actually emitted.

See also

Committing

connection(mapper=None, clause=None, bind=None, close_with_result=False, execution_options=None, **kw)

Return a Connection object corresponding to this Session object’s transactional state.

If this Session is configured with autocommit=False, either the Connection corresponding to the current transaction is returned, or if no transaction is in progress, a new one is begun and the Connection returned (note that no transactional state is established with the DBAPI until the first SQL statement is emitted).

Alternatively, if this Session is configured with autocommit=True, an ad-hoc Connection is returned using Engine.contextual_connect() on the underlying Engine.

Ambiguity in multi-bind or unbound Session objects can be resolved through any of the optional keyword arguments. This ultimately makes usage of the get_bind() method for resolution.

Parameters:
  • bind – Optional Engine to be used as the bind. If this engine is already involved in an ongoing transaction, that connection will be used. This argument takes precedence over mapper, clause.
  • mapper – Optional mapper() mapped class, used to identify the appropriate bind. This argument takes precedence over clause.
  • clause – A ClauseElement (i.e. select(), text(), etc.) which will be used to locate a bind, if a bind cannot otherwise be identified.
  • close_with_result – Passed to Engine.connect(), indicating the Connection should be considered “single use”, automatically closing when the first result set is closed. This flag only has an effect if this Session is configured with autocommit=True and does not already have a transaction in progress.
  • execution_options

    a dictionary of execution options that will be passed to Connection.execution_options(), when the connection is first procured only. If the connection is already present within the Session, a warning is emitted and the arguments are ignored.

    New in version 0.9.9.

  • **kw – Additional keyword arguments are sent to get_bind(), allowing additional arguments to be passed to custom implementations of get_bind().
delete(instance)

Mark an instance as deleted.

The database delete operation occurs upon flush().

deleted

The set of all instances marked as ‘deleted’ within this Session

dirty

The set of all persistent instances considered dirty.

E.g.:

some_mapped_object in session.dirty

Instances are considered dirty when they were modified but not deleted.

Note that this ‘dirty’ calculation is ‘optimistic’; most attribute-setting or collection modification operations will mark an instance as ‘dirty’ and place it in this set, even if there is no net change to the attribute’s value. At flush time, the value of each attribute is compared to its previously saved value, and if there’s no net change, no SQL operation will occur (this is a more expensive operation so it’s only done at flush time).

To check if an instance has actionable net changes to its attributes, use the Session.is_modified() method.

enable_relationship_loading(obj)

Associate an object with this Session for related object loading.

Warning

enable_relationship_loading() exists to serve special use cases and is not recommended for general use.

Accesses of attributes mapped with relationship() will attempt to load a value from the database using this Session as the source of connectivity. The values will be loaded based on foreign key values present on this object - it follows that this functionality generally only works for many-to-one-relationships.

The object will be attached to this session, but will not participate in any persistence operations; its state for almost all purposes will remain either “transient” or “detached”, except for the case of relationship loading.

Also note that backrefs will often not work as expected. Altering a relationship-bound attribute on the target object may not fire off a backref event, if the effective value is what was already loaded from a foreign-key-holding value.

The Session.enable_relationship_loading() method is similar to the load_on_pending flag on relationship(). Unlike that flag, Session.enable_relationship_loading() allows an object to remain transient while still being able to load related items.

To make a transient object associated with a Session via Session.enable_relationship_loading() pending, add it to the Session using Session.add() normally.

Session.enable_relationship_loading() does not improve behavior when the ORM is used normally - object references should be constructed at the object level, not at the foreign key level, so that they are present in an ordinary way before flush() proceeds. This method is not intended for general use.

New in version 0.8.

See also

load_on_pending at relationship() - this flag allows per-relationship loading of many-to-ones on items that are pending.

execute(clause, params=None, mapper=None, bind=None, **kw)

Execute a SQL expression construct or string statement within the current transaction.

Returns a ResultProxy representing results of the statement execution, in the same manner as that of an Engine or Connection.

E.g.:

result = session.execute(
            user_table.select().where(user_table.c.id == 5)
        )

execute() accepts any executable clause construct, such as select(), insert(), update(), delete(), and text(). Plain SQL strings can be passed as well, which in the case of Session.execute() only will be interpreted the same as if it were passed via a text() construct. That is, the following usage:

result = session.execute(
            "SELECT * FROM user WHERE id=:param",
            {"param":5}
        )

is equivalent to:

from sqlalchemy import text
result = session.execute(
            text("SELECT * FROM user WHERE id=:param"),
            {"param":5}
        )

The second positional argument to Session.execute() is an optional parameter set. Similar to that of Connection.execute(), whether this is passed as a single dictionary, or a list of dictionaries, determines whether the DBAPI cursor’s execute() or executemany() is used to execute the statement. An INSERT construct may be invoked for a single row:

result = session.execute(
    users.insert(), {"id": 7, "name": "somename"})

or for multiple rows:

result = session.execute(users.insert(), [
                        {"id": 7, "name": "somename7"},
                        {"id": 8, "name": "somename8"},
                        {"id": 9, "name": "somename9"}
                    ])

The statement is executed within the current transactional context of this Session. The Connection which is used to execute the statement can also be acquired directly by calling the Session.connection() method. Both methods use a rule-based resolution scheme in order to determine the Connection, which in the average case is derived directly from the “bind” of the Session itself, and in other cases can be based on the mapper() and Table objects passed to the method; see the documentation for Session.get_bind() for a full description of this scheme.

The Session.execute() method does not invoke autoflush.

The ResultProxy returned by the Session.execute() method is returned with the “close_with_result” flag set to true; the significance of this flag is that if this Session is autocommitting and does not have a transaction-dedicated Connection available, a temporary Connection is established for the statement execution, which is closed (meaning, returned to the connection pool) when the ResultProxy has consumed all available data. This applies only when the Session is configured with autocommit=True and no transaction has been started.

Parameters:
  • clause – An executable statement (i.e. an Executable expression such as expression.select()) or string SQL statement to be executed.
  • params – Optional dictionary, or list of dictionaries, containing bound parameter values. If a single dictionary, single-row execution occurs; if a list of dictionaries, an “executemany” will be invoked. The keys in each dictionary must correspond to parameter names present in the statement.
  • mapper – Optional mapper() or mapped class, used to identify the appropriate bind. This argument takes precedence over clause when locating a bind. See Session.get_bind() for more details.
  • bind – Optional Engine to be used as the bind. If this engine is already involved in an ongoing transaction, that connection will be used. This argument takes precedence over mapper and clause when locating a bind.
  • **kw – Additional keyword arguments are sent to Session.get_bind() to allow extensibility of “bind” schemes.

See also

SQL Expression Language Tutorial - Tutorial on using Core SQL constructs.

Working with Engines and Connections - Further information on direct statement execution.

Connection.execute() - core level statement execution method, which is Session.execute() ultimately uses in order to execute the statement.

expire(instance, attribute_names=None)

Expire the attributes on an instance.

Marks the attributes of an instance as out of date. When an expired attribute is next accessed, a query will be issued to the Session object’s current transactional context in order to load all expired attributes for the given instance. Note that a highly isolated transaction will return the same values as were previously read in that same transaction, regardless of changes in database state outside of that transaction.

To expire all objects in the Session simultaneously, use Session.expire_all().

The Session object’s default behavior is to expire all state whenever the Session.rollback() or Session.commit() methods are called, so that new state can be loaded for the new transaction. For this reason, calling Session.expire() only makes sense for the specific case that a non-ORM SQL statement was emitted in the current transaction.

Parameters:
  • instance – The instance to be refreshed.
  • attribute_names – optional list of string attribute names indicating a subset of attributes to be expired.

See also

Refreshing / Expiring - introductory material

Session.expire()

Session.refresh()

expire_all()

Expires all persistent instances within this Session.

When any attributes on a persistent instance is next accessed, a query will be issued using the Session object’s current transactional context in order to load all expired attributes for the given instance. Note that a highly isolated transaction will return the same values as were previously read in that same transaction, regardless of changes in database state outside of that transaction.

To expire individual objects and individual attributes on those objects, use Session.expire().

The Session object’s default behavior is to expire all state whenever the Session.rollback() or Session.commit() methods are called, so that new state can be loaded for the new transaction. For this reason, calling Session.expire_all() should not be needed when autocommit is False, assuming the transaction is isolated.

See also

Refreshing / Expiring - introductory material

Session.expire()

Session.refresh()

expunge(instance)

Remove the instance from this Session.

This will free all internal references to the instance. Cascading will be applied according to the expunge cascade rule.

expunge_all()

Remove all object instances from this Session.

This is equivalent to calling expunge(obj) on all objects in this Session.

flush(objects=None)

Flush all the object changes to the database.

Writes out all pending object creations, deletions and modifications to the database as INSERTs, DELETEs, UPDATEs, etc. Operations are automatically ordered by the Session’s unit of work dependency solver.

Database operations will be issued in the current transactional context and do not affect the state of the transaction, unless an error occurs, in which case the entire transaction is rolled back. You may flush() as often as you like within a transaction to move changes from Python to the database’s transaction buffer.

For autocommit Sessions with no active manual transaction, flush() will create a transaction on the fly that surrounds the entire set of operations into the flush.

Parameters:objects

Optional; restricts the flush operation to operate only on elements that are in the given collection.

This feature is for an extremely narrow set of use cases where particular objects may need to be operated upon before the full flush() occurs. It is not intended for general use.

get_bind(mapper=None, clause=None)

Return a “bind” to which this Session is bound.

The “bind” is usually an instance of Engine, except in the case where the Session has been explicitly bound directly to a Connection.

For a multiply-bound or unbound Session, the mapper or clause arguments are used to determine the appropriate bind to return.

Note that the “mapper” argument is usually present when Session.get_bind() is called via an ORM operation such as a Session.query(), each individual INSERT/UPDATE/DELETE operation within a Session.flush(), call, etc.

The order of resolution is:

  1. if mapper given and session.binds is present, locate a bind based on mapper.
  2. if clause given and session.binds is present, locate a bind based on Table objects found in the given clause present in session.binds.
  3. if session.bind is present, return that.
  4. if clause given, attempt to return a bind linked to the MetaData ultimately associated with the clause.
  5. if mapper given, attempt to return a bind linked to the MetaData ultimately associated with the Table or other selectable to which the mapper is mapped.
  6. No bind can be found, UnboundExecutionError is raised.
Parameters:
  • mapper – Optional mapper() mapped class or instance of Mapper. The bind can be derived from a Mapper first by consulting the “binds” map associated with this Session, and secondly by consulting the MetaData associated with the Table to which the Mapper is mapped for a bind.
  • clause – A ClauseElement (i.e. select(), text(), etc.). If the mapper argument is not present or could not produce a bind, the given expression construct will be searched for a bound element, typically a Table associated with bound MetaData.
identity_key(*args, **kwargs)
inherited from the identity_key() method of _SessionClassMethods

Return an identity key.

This is an alias of util.identity_key().

identity_map = None

A mapping of object identities to objects themselves.

Iterating through Session.identity_map.values() provides access to the full set of persistent objects (i.e., those that have row identity) currently in the session.

See also

identity_key() - helper function to produce the keys used in this dictionary.

info

A user-modifiable dictionary.

The initial value of this dictionary can be populated using the info argument to the Session constructor or sessionmaker constructor or factory methods. The dictionary here is always local to this Session and can be modified independently of all other Session objects.

New in version 0.9.0.

invalidate()

Close this Session, using connection invalidation.

This is a variant of Session.close() that will additionally ensure that the Connection.invalidate() method will be called on all Connection objects. This can be called when the database is known to be in a state where the connections are no longer safe to be used.

E.g.:

try:
    sess = Session()
    sess.add(User())
    sess.commit()
except gevent.Timeout:
    sess.invalidate()
    raise
except:
    sess.rollback()
    raise

This clears all items and ends any transaction in progress.

If this session were created with autocommit=False, a new transaction is immediately begun. Note that this new transaction does not use any connection resources until they are first needed.

New in version 0.9.9.

is_active

True if this Session is in “transaction mode” and is not in “partial rollback” state.

The Session in its default mode of autocommit=False is essentially always in “transaction mode”, in that a SessionTransaction is associated with it as soon as it is instantiated. This SessionTransaction is immediately replaced with a new one as soon as it is ended, due to a rollback, commit, or close operation.

“Transaction mode” does not indicate whether or not actual database connection resources are in use; the SessionTransaction object coordinates among zero or more actual database transactions, and starts out with none, accumulating individual DBAPI connections as different data sources are used within its scope. The best way to track when a particular Session has actually begun to use DBAPI resources is to implement a listener using the SessionEvents.after_begin() method, which will deliver both the Session as well as the target Connection to a user-defined event listener.

The “partial rollback” state refers to when an “inner” transaction, typically used during a flush, encounters an error and emits a rollback of the DBAPI connection. At this point, the Session is in “partial rollback” and awaits for the user to call Session.rollback(), in order to close out the transaction stack. It is in this “partial rollback” period that the is_active flag returns False. After the call to Session.rollback(), the SessionTransaction is replaced with a new one and is_active returns True again.

When a Session is used in autocommit=True mode, the SessionTransaction is only instantiated within the scope of a flush call, or when Session.begin() is called. So is_active will always be False outside of a flush or Session.begin() block in this mode, and will be True within the Session.begin() block as long as it doesn’t enter “partial rollback” state.

From all the above, it follows that the only purpose to this flag is for application frameworks that wish to detect is a “rollback” is necessary within a generic error handling routine, for Session objects that would otherwise be in “partial rollback” mode. In a typical integration case, this is also not necessary as it is standard practice to emit Session.rollback() unconditionally within the outermost exception catch.

To track the transactional state of a Session fully, use event listeners, primarily the SessionEvents.after_begin(), SessionEvents.after_commit(), SessionEvents.after_rollback() and related events.

is_modified(instance, include_collections=True, passive=True)

Return True if the given instance has locally modified attributes.

This method retrieves the history for each instrumented attribute on the instance and performs a comparison of the current value to its previously committed value, if any.

It is in effect a more expensive and accurate version of checking for the given instance in the Session.dirty collection; a full test for each attribute’s net “dirty” status is performed.

E.g.:

return session.is_modified(someobject)

Changed in version 0.8: When using SQLAlchemy 0.7 and earlier, the passive flag should always be explicitly set to True, else SQL loads/autoflushes may proceed which can affect the modified state itself: session.is_modified(someobject, passive=True). In 0.8 and above, the behavior is corrected and this flag is ignored.

A few caveats to this method apply:

  • Instances present in the Session.dirty collection may report False when tested with this method. This is because the object may have received change events via attribute mutation, thus placing it in Session.dirty, but ultimately the state is the same as that loaded from the database, resulting in no net change here.

  • Scalar attributes may not have recorded the previously set value when a new value was applied, if the attribute was not loaded, or was expired, at the time the new value was received - in these cases, the attribute is assumed to have a change, even if there is ultimately no net change against its database value. SQLAlchemy in most cases does not need the “old” value when a set event occurs, so it skips the expense of a SQL call if the old value isn’t present, based on the assumption that an UPDATE of the scalar value is usually needed, and in those few cases where it isn’t, is less expensive on average than issuing a defensive SELECT.

    The “old” value is fetched unconditionally upon set only if the attribute container has the active_history flag set to True. This flag is set typically for primary key attributes and scalar object references that are not a simple many-to-one. To set this flag for any arbitrary mapped column, use the active_history argument with column_property().

Parameters:
  • instance – mapped instance to be tested for pending changes.
  • include_collections – Indicates if multivalued collections should be included in the operation. Setting this to False is a way to detect only local-column based properties (i.e. scalar columns or many-to-one foreign keys) that would result in an UPDATE for this instance upon flush.
  • passive

    Changed in version 0.8: Ignored for backwards compatibility. When using SQLAlchemy 0.7 and earlier, this flag should always be set to True.

merge(instance, load=True)

Copy the state of a given instance into a corresponding instance within this Session.

Session.merge() examines the primary key attributes of the source instance, and attempts to reconcile it with an instance of the same primary key in the session. If not found locally, it attempts to load the object from the database based on primary key, and if none can be located, creates a new instance. The state of each attribute on the source instance is then copied to the target instance. The resulting target instance is then returned by the method; the original source instance is left unmodified, and un-associated with the Session if not already.

This operation cascades to associated instances if the association is mapped with cascade="merge".

See Merging for a detailed discussion of merging.

Parameters:
  • instance – Instance to be merged.
  • load

    Boolean, when False, merge() switches into a “high performance” mode which causes it to forego emitting history events as well as all database access. This flag is used for cases such as transferring graphs of objects into a Session from a second level cache, or to transfer just-loaded objects into the Session owned by a worker thread or process without re-querying the database.

    The load=False use case adds the caveat that the given object has to be in a “clean” state, that is, has no pending changes to be flushed - even if the incoming object is detached from any Session. This is so that when the merge operation populates local attributes and cascades to related objects and collections, the values can be “stamped” onto the target object as is, without generating any history or attribute events, and without the need to reconcile the incoming data with any existing related objects or collections that might not be loaded. The resulting objects from load=False are always produced as “clean”, so it is only appropriate that the given objects should be “clean” as well, else this suggests a mis-use of the method.

new

The set of all instances marked as ‘new’ within this Session.

no_autoflush

Return a context manager that disables autoflush.

e.g.:

with session.no_autoflush:

    some_object = SomeClass()
    session.add(some_object)
    # won't autoflush
    some_object.related_thing = session.query(SomeRelated).first()

Operations that proceed within the with: block will not be subject to flushes occurring upon query access. This is useful when initializing a series of objects which involve existing database queries, where the uncompleted object should not yet be flushed.

New in version 0.7.6.

object_session(instance)
inherited from the object_session() method of _SessionClassMethods

Return the Session to which an object belongs.

This is an alias of object_session().

prepare()

Prepare the current transaction in progress for two phase commit.

If no transaction is in progress, this method raises an InvalidRequestError.

Only root transactions of two phase sessions can be prepared. If the current transaction is not such, an InvalidRequestError is raised.

prune()

Remove unreferenced instances cached in the identity map.

Deprecated since version 0.7: The non-weak-referencing identity map feature is no longer needed.

Note that this method is only meaningful if “weak_identity_map” is set to False. The default weak identity map is self-pruning.

Removes any object in this Session’s identity map that is not referenced in user code, modified, new or scheduled for deletion. Returns the number of objects pruned.

query(*entities, **kwargs)

Return a new Query object corresponding to this Session.

refresh(instance, attribute_names=None, lockmode=None)

Expire and refresh the attributes on the given instance.

A query will be issued to the database and all attributes will be refreshed with their current database value.

Lazy-loaded relational attributes will remain lazily loaded, so that the instance-wide refresh operation will be followed immediately by the lazy load of that attribute.

Eagerly-loaded relational attributes will eagerly load within the single refresh operation.

Note that a highly isolated transaction will return the same values as were previously read in that same transaction, regardless of changes in database state outside of that transaction - usage of refresh() usually only makes sense if non-ORM SQL statement were emitted in the ongoing transaction, or if autocommit mode is turned on.

Parameters:
  • attribute_names – optional. An iterable collection of string attribute names indicating a subset of attributes to be refreshed.
  • lockmode – Passed to the Query as used by with_lockmode().
rollback()

Rollback the current transaction in progress.

If no transaction is in progress, this method is a pass-through.

This method rolls back the current transaction or nested transaction regardless of subtransactions being in effect. All subtransactions up to the first real transaction are closed. Subtransactions occur when begin() is called multiple times.

See also

Rolling Back

scalar(clause, params=None, mapper=None, bind=None, **kw)

Like execute() but return a scalar result.

transaction = None

The current active or inactive SessionTransaction.

class sqlalchemy.orm.session.SessionTransaction(session, parent=None, nested=False)

A Session-level transaction.

SessionTransaction is a mostly behind-the-scenes object not normally referenced directly by application code. It coordinates among multiple Connection objects, maintaining a database transaction for each one individually, committing or rolling them back all at once. It also provides optional two-phase commit behavior which can augment this coordination operation.

The Session.transaction attribute of Session refers to the current SessionTransaction object in use, if any.

A SessionTransaction is associated with a Session in its default mode of autocommit=False immediately, associated with no database connections. As the Session is called upon to emit SQL on behalf of various Engine or Connection objects, a corresponding Connection and associated Transaction is added to a collection within the SessionTransaction object, becoming one of the connection/transaction pairs maintained by the SessionTransaction.

The lifespan of the SessionTransaction ends when the Session.commit(), Session.rollback() or Session.close() methods are called. At this point, the SessionTransaction removes its association with its parent Session. A Session that is in autocommit=False mode will create a new SessionTransaction to replace it immediately, whereas a Session that’s in autocommit=True mode will remain without a SessionTransaction until the Session.begin() method is called.

Another detail of SessionTransaction behavior is that it is capable of “nesting”. This means that the Session.begin() method can be called while an existing SessionTransaction is already present, producing a new SessionTransaction that temporarily replaces the parent SessionTransaction. When a SessionTransaction is produced as nested, it assigns itself to the Session.transaction attribute. When it is ended via Session.commit() or Session.rollback(), it restores its parent SessionTransaction back onto the Session.transaction attribute. The behavior is effectively a stack, where Session.transaction refers to the current head of the stack.

The purpose of this stack is to allow nesting of Session.rollback() or Session.commit() calls in context with various flavors of Session.begin(). This nesting behavior applies to when Session.begin_nested() is used to emit a SAVEPOINT transaction, and is also used to produce a so-called “subtransaction” which allows a block of code to use a begin/rollback/commit sequence regardless of whether or not its enclosing code block has begun a transaction. The flush() method, whether called explicitly or via autoflush, is the primary consumer of the “subtransaction” feature, in that it wishes to guarantee that it works within in a transaction block regardless of whether or not the Session is in transactional mode when the method is called.

See also:

Session.rollback()

Session.commit()

Session.begin()

Session.begin_nested()

Session.is_active

SessionEvents.after_commit()

SessionEvents.after_rollback()

SessionEvents.after_soft_rollback()

Session Utilites

sqlalchemy.orm.session.make_transient(instance)

Alter the state of the given instance so that it is transient.

Note

make_transient() is a special-case function for advanced use cases only.

The given mapped instance is assumed to be in the persistent or detached state. The function will remove its association with any Session as well as its InstanceState.identity. The effect is that the object will behave as though it were newly constructed, except retaining any attribute / collection values that were loaded at the time of the call. The InstanceState.deleted flag is also reset if this object had been deleted as a result of using Session.delete().

Warning

make_transient() does not “unexpire” or otherwise eagerly load ORM-mapped attributes that are not currently loaded at the time the function is called. This includes attributes which:

  • were expired via Session.expire()
  • were expired as the natural effect of committing a session transaction, e.g. Session.commit()
  • are normally lazy loaded but are not currently loaded
  • are “deferred” via Deferred Column Loading and are not yet loaded
  • were not present in the query which loaded this object, such as that which is common in joined table inheritance and other scenarios.

After make_transient() is called, unloaded attributes such as those above will normally resolve to the value None when accessed, or an empty collection for a collection-oriented attribute. As the object is transient and un-associated with any database identity, it will no longer retrieve these values.

sqlalchemy.orm.session.make_transient_to_detached(instance)

Make the given transient instance detached.

Note

make_transient_to_detached() is a special-case function for advanced use cases only.

All attribute history on the given instance will be reset as though the instance were freshly loaded from a query. Missing attributes will be marked as expired. The primary key attributes of the object, which are required, will be made into the “key” of the instance.

The object can then be added to a session, or merged possibly with the load=False flag, at which point it will look as if it were loaded that way, without emitting SQL.

This is a special use case function that differs from a normal call to Session.merge() in that a given persistent state can be manufactured without any SQL calls.

New in version 0.9.5.

See also

make_transient()

sqlalchemy.orm.session.object_session(instance)

Return the Session to which the given instance belongs.

This is essentially the same as the InstanceState.session accessor. See that attribute for details.

sqlalchemy.orm.util.was_deleted(object)

Return True if the given object was deleted within a session flush.

New in version 0.8.0.

Attribute and State Management Utilities

These functions are provided by the SQLAlchemy attribute instrumentation API to provide a detailed interface for dealing with instances, attribute values, and history. Some of them are useful when constructing event listener functions, such as those described in ORM Events.

sqlalchemy.orm.util.object_state(instance)

Given an object, return the InstanceState associated with the object.

Raises sqlalchemy.orm.exc.UnmappedInstanceError if no mapping is configured.

Equivalent functionality is available via the inspect() function as:

inspect(instance)

Using the inspection system will raise sqlalchemy.exc.NoInspectionAvailable if the instance is not part of a mapping.

sqlalchemy.orm.attributes.del_attribute(instance, key)

Delete the value of an attribute, firing history events.

This function may be used regardless of instrumentation applied directly to the class, i.e. no descriptors are required. Custom attribute management schemes will need to make usage of this method to establish attribute state as understood by SQLAlchemy.

sqlalchemy.orm.attributes.get_attribute(instance, key)

Get the value of an attribute, firing any callables required.

This function may be used regardless of instrumentation applied directly to the class, i.e. no descriptors are required. Custom attribute management schemes will need to make usage of this method to make usage of attribute state as understood by SQLAlchemy.

sqlalchemy.orm.attributes.get_history(obj, key, passive=symbol('PASSIVE_OFF'))

Return a History record for the given object and attribute key.

Parameters:
  • obj – an object whose class is instrumented by the attributes package.
  • key – string attribute name.
  • passive – indicates loading behavior for the attribute if the value is not already present. This is a bitflag attribute, which defaults to the symbol PASSIVE_OFF indicating all necessary SQL should be emitted.
sqlalchemy.orm.attributes.init_collection(obj, key)

Initialize a collection attribute and return the collection adapter.

This function is used to provide direct access to collection internals for a previously unloaded attribute. e.g.:

collection_adapter = init_collection(someobject, 'elements')
for elem in values:
    collection_adapter.append_without_event(elem)

For an easier way to do the above, see set_committed_value().

obj is an instrumented object instance. An InstanceState is accepted directly for backwards compatibility but this usage is deprecated.

sqlalchemy.orm.attributes.flag_modified(instance, key)

Mark an attribute on an instance as ‘modified’.

This sets the ‘modified’ flag on the instance and establishes an unconditional change event for the given attribute.

sqlalchemy.orm.attributes.instance_state()

Return the InstanceState for a given mapped object.

This function is the internal version of object_state(). The object_state() and/or the inspect() function is preferred here as they each emit an informative exception if the given object is not mapped.

sqlalchemy.orm.instrumentation.is_instrumented(instance, key)

Return True if the given attribute on the given instance is instrumented by the attributes package.

This function may be used regardless of instrumentation applied directly to the class, i.e. no descriptors are required.

sqlalchemy.orm.attributes.set_attribute(instance, key, value)

Set the value of an attribute, firing history events.

This function may be used regardless of instrumentation applied directly to the class, i.e. no descriptors are required. Custom attribute management schemes will need to make usage of this method to establish attribute state as understood by SQLAlchemy.

sqlalchemy.orm.attributes.set_committed_value(instance, key, value)

Set the value of an attribute with no history events.

Cancels any previous history present. The value should be a scalar value for scalar-holding attributes, or an iterable for any collection-holding attribute.

This is the same underlying method used when a lazy loader fires off and loads additional data from the database. In particular, this method can be used by application code which has loaded additional attributes or collections through separate queries, which can then be attached to an instance as though it were part of its original loaded state.

class sqlalchemy.orm.attributes.History

Bases: sqlalchemy.orm.attributes.History

A 3-tuple of added, unchanged and deleted values, representing the changes which have occurred on an instrumented attribute.

The easiest way to get a History object for a particular attribute on an object is to use the inspect() function:

from sqlalchemy import inspect

hist = inspect(myobject).attrs.myattribute.history

Each tuple member is an iterable sequence:

  • added - the collection of items added to the attribute (the first tuple element).
  • unchanged - the collection of items that have not changed on the attribute (the second tuple element).
  • deleted - the collection of items that have been removed from the attribute (the third tuple element).
empty()

Return True if this History has no changes and no existing, unchanged state.

has_changes()

Return True if this History has changes.

non_added()

Return a collection of unchanged + deleted.

non_deleted()

Return a collection of added + unchanged.

sum()

Return a collection of added + unchanged + deleted.