Class

scala.reflect.api.Trees

TreeCopierOps

Related Doc: package Trees

Permalink

abstract class TreeCopierOps extends AnyRef

The API of a tree copier.

Source
Trees.scala
Linear Supertypes
Known Subclasses
TreeCopier, TreeCopier
Type Hierarchy
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. TreeCopierOps
  2. AnyRef
  3. Any
Implicitly
  1. by any2stringadd
  2. by StringFormat
  3. by Ensuring
  4. by ArrowAssoc
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new TreeCopierOps()

    Permalink

Abstract Value Members

  1. abstract def Alternative(tree: Universe.Tree, trees: List[Universe.Tree]): Universe.Alternative

    Permalink

    Creates a Alternative node from the given components, having a given tree as a prototype.

    Creates a Alternative node from the given components, having a given tree as a prototype. Having a tree as a prototype means that the tree's attachments, type and symbol will be copied into the result.

  2. abstract def Annotated(tree: Universe.Tree, annot: Universe.Tree, arg: Universe.Tree): Universe.Annotated

    Permalink

    Creates a Annotated node from the given components, having a given tree as a prototype.

    Creates a Annotated node from the given components, having a given tree as a prototype. Having a tree as a prototype means that the tree's attachments, type and symbol will be copied into the result.

  3. abstract def AppliedTypeTree(tree: Universe.Tree, tpt: Universe.Tree, args: List[Universe.Tree]): Universe.AppliedTypeTree

    Permalink

    Creates a AppliedTypeTree node from the given components, having a given tree as a prototype.

    Creates a AppliedTypeTree node from the given components, having a given tree as a prototype. Having a tree as a prototype means that the tree's attachments, type and symbol will be copied into the result.

  4. abstract def Apply(tree: Universe.Tree, fun: Universe.Tree, args: List[Universe.Tree]): Universe.Apply

    Permalink

    Creates a Apply node from the given components, having a given tree as a prototype.

    Creates a Apply node from the given components, having a given tree as a prototype. Having a tree as a prototype means that the tree's attachments, type and symbol will be copied into the result.

  5. abstract def Assign(tree: Universe.Tree, lhs: Universe.Tree, rhs: Universe.Tree): Universe.Assign

    Permalink

    Creates a Assign node from the given components, having a given tree as a prototype.

    Creates a Assign node from the given components, having a given tree as a prototype. Having a tree as a prototype means that the tree's attachments, type and symbol will be copied into the result.

  6. abstract def AssignOrNamedArg(tree: Universe.Tree, lhs: Universe.Tree, rhs: Universe.Tree): Universe.AssignOrNamedArg

    Permalink

    Creates a AssignOrNamedArg node from the given components, having a given tree as a prototype.

    Creates a AssignOrNamedArg node from the given components, having a given tree as a prototype. Having a tree as a prototype means that the tree's attachments, type and symbol will be copied into the result.

  7. abstract def Bind(tree: Universe.Tree, name: Universe.Name, body: Universe.Tree): Universe.Bind

    Permalink

    Creates a Bind node from the given components, having a given tree as a prototype.

    Creates a Bind node from the given components, having a given tree as a prototype. Having a tree as a prototype means that the tree's attachments, type and symbol will be copied into the result.

  8. abstract def Block(tree: Universe.Tree, stats: List[Universe.Tree], expr: Universe.Tree): Universe.Block

    Permalink

    Creates a Block node from the given components, having a given tree as a prototype.

    Creates a Block node from the given components, having a given tree as a prototype. Having a tree as a prototype means that the tree's attachments, type and symbol will be copied into the result.

  9. abstract def CaseDef(tree: Universe.Tree, pat: Universe.Tree, guard: Universe.Tree, body: Universe.Tree): Universe.CaseDef

    Permalink

    Creates a CaseDef node from the given components, having a given tree as a prototype.

    Creates a CaseDef node from the given components, having a given tree as a prototype. Having a tree as a prototype means that the tree's attachments, type and symbol will be copied into the result.

  10. abstract def ClassDef(tree: Universe.Tree, mods: Universe.Modifiers, name: Universe.Name, tparams: List[Universe.TypeDef], impl: Universe.Template): Universe.ClassDef

    Permalink

    Creates a ClassDef node from the given components, having a given tree as a prototype.

    Creates a ClassDef node from the given components, having a given tree as a prototype. Having a tree as a prototype means that the tree's attachments, type and symbol will be copied into the result.

  11. abstract def CompoundTypeTree(tree: Universe.Tree, templ: Universe.Template): Universe.CompoundTypeTree

    Permalink

    Creates a CompoundTypeTree node from the given components, having a given tree as a prototype.

    Creates a CompoundTypeTree node from the given components, having a given tree as a prototype. Having a tree as a prototype means that the tree's attachments, type and symbol will be copied into the result.

  12. abstract def DefDef(tree: Universe.Tree, mods: Universe.Modifiers, name: Universe.Name, tparams: List[Universe.TypeDef], vparamss: List[List[Universe.ValDef]], tpt: Universe.Tree, rhs: Universe.Tree): Universe.DefDef

    Permalink

    Creates a DefDef node from the given components, having a given tree as a prototype.

    Creates a DefDef node from the given components, having a given tree as a prototype. Having a tree as a prototype means that the tree's attachments, type and symbol will be copied into the result.

  13. abstract def ExistentialTypeTree(tree: Universe.Tree, tpt: Universe.Tree, whereClauses: List[Universe.MemberDef]): Universe.ExistentialTypeTree

    Permalink

    Creates a ExistentialTypeTree node from the given components, having a given tree as a prototype.

    Creates a ExistentialTypeTree node from the given components, having a given tree as a prototype. Having a tree as a prototype means that the tree's attachments, type and symbol will be copied into the result.

  14. abstract def Function(tree: Universe.Tree, vparams: List[Universe.ValDef], body: Universe.Tree): Universe.Function

    Permalink

    Creates a Function node from the given components, having a given tree as a prototype.

    Creates a Function node from the given components, having a given tree as a prototype. Having a tree as a prototype means that the tree's attachments, type and symbol will be copied into the result.

  15. abstract def Ident(tree: Universe.Tree, name: Universe.Name): Universe.Ident

    Permalink

    Creates a Ident node from the given components, having a given tree as a prototype.

    Creates a Ident node from the given components, having a given tree as a prototype. Having a tree as a prototype means that the tree's attachments, type and symbol will be copied into the result.

  16. abstract def If(tree: Universe.Tree, cond: Universe.Tree, thenp: Universe.Tree, elsep: Universe.Tree): Universe.If

    Permalink

    Creates a If node from the given components, having a given tree as a prototype.

    Creates a If node from the given components, having a given tree as a prototype. Having a tree as a prototype means that the tree's attachments, type and symbol will be copied into the result.

  17. abstract def Import(tree: Universe.Tree, expr: Universe.Tree, selectors: List[Universe.ImportSelector]): Universe.Import

    Permalink

    Creates a Import node from the given components, having a given tree as a prototype.

    Creates a Import node from the given components, having a given tree as a prototype. Having a tree as a prototype means that the tree's attachments, type and symbol will be copied into the result.

  18. abstract def LabelDef(tree: Universe.Tree, name: Universe.Name, params: List[Universe.Ident], rhs: Universe.Tree): Universe.LabelDef

    Permalink

    Creates a LabelDef node from the given components, having a given tree as a prototype.

    Creates a LabelDef node from the given components, having a given tree as a prototype. Having a tree as a prototype means that the tree's attachments, type and symbol will be copied into the result.

  19. abstract def Literal(tree: Universe.Tree, value: Universe.Constant): Universe.Literal

    Permalink

    Creates a Literal node from the given components, having a given tree as a prototype.

    Creates a Literal node from the given components, having a given tree as a prototype. Having a tree as a prototype means that the tree's attachments, type and symbol will be copied into the result.

  20. abstract def Match(tree: Universe.Tree, selector: Universe.Tree, cases: List[Universe.CaseDef]): Universe.Match

    Permalink

    Creates a Match node from the given components, having a given tree as a prototype.

    Creates a Match node from the given components, having a given tree as a prototype. Having a tree as a prototype means that the tree's attachments, type and symbol will be copied into the result.

  21. abstract def ModuleDef(tree: Universe.Tree, mods: Universe.Modifiers, name: Universe.Name, impl: Universe.Template): Universe.ModuleDef

    Permalink

    Creates a ModuleDef node from the given components, having a given tree as a prototype.

    Creates a ModuleDef node from the given components, having a given tree as a prototype. Having a tree as a prototype means that the tree's attachments, type and symbol will be copied into the result.

  22. abstract def New(tree: Universe.Tree, tpt: Universe.Tree): Universe.New

    Permalink

    Creates a New node from the given components, having a given tree as a prototype.

    Creates a New node from the given components, having a given tree as a prototype. Having a tree as a prototype means that the tree's attachments, type and symbol will be copied into the result.

  23. abstract def PackageDef(tree: Universe.Tree, pid: Universe.RefTree, stats: List[Universe.Tree]): Universe.PackageDef

    Permalink

    Creates a PackageDef node from the given components, having a given tree as a prototype.

    Creates a PackageDef node from the given components, having a given tree as a prototype. Having a tree as a prototype means that the tree's attachments, type and symbol will be copied into the result.

  24. abstract def RefTree(tree: Universe.Tree, qualifier: Universe.Tree, selector: Universe.Name): Universe.RefTree

    Permalink

    Creates a RefTree node from the given components, having a given tree as a prototype.

    Creates a RefTree node from the given components, having a given tree as a prototype. Having a tree as a prototype means that the tree's attachments, type and symbol will be copied into the result.

  25. abstract def ReferenceToBoxed(tree: Universe.Tree, idt: Universe.Ident): Universe.ReferenceToBoxed

    Permalink

    Creates a ReferenceToBoxed node from the given components, having a given tree as a prototype.

    Creates a ReferenceToBoxed node from the given components, having a given tree as a prototype. Having a tree as a prototype means that the tree's attachments, type and symbol will be copied into the result.

  26. abstract def Return(tree: Universe.Tree, expr: Universe.Tree): Universe.Return

    Permalink

    Creates a Return node from the given components, having a given tree as a prototype.

    Creates a Return node from the given components, having a given tree as a prototype. Having a tree as a prototype means that the tree's attachments, type and symbol will be copied into the result.

  27. abstract def Select(tree: Universe.Tree, qualifier: Universe.Tree, selector: Universe.Name): Universe.Select

    Permalink

    Creates a Select node from the given components, having a given tree as a prototype.

    Creates a Select node from the given components, having a given tree as a prototype. Having a tree as a prototype means that the tree's attachments, type and symbol will be copied into the result.

  28. abstract def SelectFromTypeTree(tree: Universe.Tree, qualifier: Universe.Tree, selector: Universe.Name): Universe.SelectFromTypeTree

    Permalink

    Creates a SelectFromTypeTree node from the given components, having a given tree as a prototype.

    Creates a SelectFromTypeTree node from the given components, having a given tree as a prototype. Having a tree as a prototype means that the tree's attachments, type and symbol will be copied into the result.

  29. abstract def SingletonTypeTree(tree: Universe.Tree, ref: Universe.Tree): Universe.SingletonTypeTree

    Permalink

    Creates a SingletonTypeTree node from the given components, having a given tree as a prototype.

    Creates a SingletonTypeTree node from the given components, having a given tree as a prototype. Having a tree as a prototype means that the tree's attachments, type and symbol will be copied into the result.

  30. abstract def Star(tree: Universe.Tree, elem: Universe.Tree): Universe.Star

    Permalink

    Creates a Star node from the given components, having a given tree as a prototype.

    Creates a Star node from the given components, having a given tree as a prototype. Having a tree as a prototype means that the tree's attachments, type and symbol will be copied into the result.

  31. abstract def Super(tree: Universe.Tree, qual: Universe.Tree, mix: Universe.TypeName): Universe.Super

    Permalink

    Creates a Super node from the given components, having a given tree as a prototype.

    Creates a Super node from the given components, having a given tree as a prototype. Having a tree as a prototype means that the tree's attachments, type and symbol will be copied into the result.

  32. abstract def Template(tree: Universe.Tree, parents: List[Universe.Tree], self: Universe.ValDef, body: List[Universe.Tree]): Universe.Template

    Permalink

    Creates a Template node from the given components, having a given tree as a prototype.

    Creates a Template node from the given components, having a given tree as a prototype. Having a tree as a prototype means that the tree's attachments, type and symbol will be copied into the result.

  33. abstract def This(tree: Universe.Tree, qual: Universe.Name): Universe.This

    Permalink

    Creates a This node from the given components, having a given tree as a prototype.

    Creates a This node from the given components, having a given tree as a prototype. Having a tree as a prototype means that the tree's attachments, type and symbol will be copied into the result.

  34. abstract def Throw(tree: Universe.Tree, expr: Universe.Tree): Universe.Throw

    Permalink

    Creates a Throw node from the given components, having a given tree as a prototype.

    Creates a Throw node from the given components, having a given tree as a prototype. Having a tree as a prototype means that the tree's attachments, type and symbol will be copied into the result.

  35. abstract def Try(tree: Universe.Tree, block: Universe.Tree, catches: List[Universe.CaseDef], finalizer: Universe.Tree): Universe.Try

    Permalink

    Creates a Try node from the given components, having a given tree as a prototype.

    Creates a Try node from the given components, having a given tree as a prototype. Having a tree as a prototype means that the tree's attachments, type and symbol will be copied into the result.

  36. abstract def TypeApply(tree: Universe.Tree, fun: Universe.Tree, args: List[Universe.Tree]): Universe.TypeApply

    Permalink

    Creates a TypeApply node from the given components, having a given tree as a prototype.

    Creates a TypeApply node from the given components, having a given tree as a prototype. Having a tree as a prototype means that the tree's attachments, type and symbol will be copied into the result.

  37. abstract def TypeBoundsTree(tree: Universe.Tree, lo: Universe.Tree, hi: Universe.Tree): Universe.TypeBoundsTree

    Permalink

    Creates a TypeBoundsTree node from the given components, having a given tree as a prototype.

    Creates a TypeBoundsTree node from the given components, having a given tree as a prototype. Having a tree as a prototype means that the tree's attachments, type and symbol will be copied into the result.

  38. abstract def TypeDef(tree: Universe.Tree, mods: Universe.Modifiers, name: Universe.Name, tparams: List[Universe.TypeDef], rhs: Universe.Tree): Universe.TypeDef

    Permalink

    Creates a TypeDef node from the given components, having a given tree as a prototype.

    Creates a TypeDef node from the given components, having a given tree as a prototype. Having a tree as a prototype means that the tree's attachments, type and symbol will be copied into the result.

  39. abstract def TypeTree(tree: Universe.Tree): Universe.TypeTree

    Permalink

    Creates a TypeTree node from the given components, having a given tree as a prototype.

    Creates a TypeTree node from the given components, having a given tree as a prototype. Having a tree as a prototype means that the tree's attachments, type and symbol will be copied into the result.

  40. abstract def Typed(tree: Universe.Tree, expr: Universe.Tree, tpt: Universe.Tree): Universe.Typed

    Permalink

    Creates a Typed node from the given components, having a given tree as a prototype.

    Creates a Typed node from the given components, having a given tree as a prototype. Having a tree as a prototype means that the tree's attachments, type and symbol will be copied into the result.

  41. abstract def UnApply(tree: Universe.Tree, fun: Universe.Tree, args: List[Universe.Tree]): Universe.UnApply

    Permalink

    Creates a UnApply node from the given components, having a given tree as a prototype.

    Creates a UnApply node from the given components, having a given tree as a prototype. Having a tree as a prototype means that the tree's attachments, type and symbol will be copied into the result.

  42. abstract def ValDef(tree: Universe.Tree, mods: Universe.Modifiers, name: Universe.Name, tpt: Universe.Tree, rhs: Universe.Tree): Universe.ValDef

    Permalink

    Creates a ValDef node from the given components, having a given tree as a prototype.

    Creates a ValDef node from the given components, having a given tree as a prototype. Having a tree as a prototype means that the tree's attachments, type and symbol will be copied into the result.