scipy.interpolate.LSQUnivariateSpline¶
- class scipy.interpolate.LSQUnivariateSpline(x, y, t, w=None, bbox=[None, None], k=3, ext=0, check_finite=False)[source]¶
- One-dimensional spline with explicit internal knots. - Fits a spline y = spl(x) of degree k to the provided x, y data. t specifies the internal knots of the spline - Parameters: - x : (N,) array_like - Input dimension of data points – must be increasing - y : (N,) array_like - Input dimension of data points - t : (M,) array_like - interior knots of the spline. Must be in ascending order and: - bbox[0] < t[0] < ... < t[-1] < bbox[-1] - w : (N,) array_like, optional - weights for spline fitting. Must be positive. If None (default), weights are all equal. - bbox : (2,) array_like, optional - 2-sequence specifying the boundary of the approximation interval. If None (default), bbox = [x[0], x[-1]]. - k : int, optional - Degree of the smoothing spline. Must be 1 <= k <= 5. Default is k=3, a cubic spline. - ext : int or str, optional - Controls the extrapolation mode for elements not in the interval defined by the knot sequence. - if ext=0 or ‘extrapolate’, return the extrapolated value.
- if ext=1 or ‘zeros’, return 0
- if ext=2 or ‘raise’, raise a ValueError
- if ext=3 of ‘const’, return the boundary value.
 - The default value is 0. - check_finite : bool, optional - Whether to check that the input arrays contain only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination or non-sensical results) if the inputs do contain infinities or NaNs. Default is False. - Raises: - ValueError - If the interior knots do not satisfy the Schoenberg-Whitney conditions - See also - UnivariateSpline
- Superclass – knots are specified by setting a smoothing condition
- InterpolatedUnivariateSpline
- spline passing through all points
- splrep
- An older, non object-oriented wrapping of FITPACK
 - BivariateSpline
- A similar class for two-dimensional spline interpolation
 - Notes - The number of data points must be larger than the spline degree k. - Knots t must satisfy the Schoenberg-Whitney conditions, i.e., there must be a subset of data points x[j] such that t[j] < x[j] < t[j+k+1], for j=0, 1,...,n-k-2. - Examples - >>> from scipy.interpolate import LSQUnivariateSpline >>> import matplotlib.pyplot as plt >>> x = np.linspace(-3, 3, 50) >>> y = np.exp(-x**2) + 0.1 * np.random.randn(50) - Fit a smoothing spline with a pre-defined internal knots: - >>> t = [-1, 0, 1] >>> spl = LSQUnivariateSpline(x, y, t) - >>> xs = np.linspace(-3, 3, 1000) >>> plt.plot(x, y, 'ro', ms=5) >>> plt.plot(xs, spl(xs), 'g-', lw=3) >>> plt.show()   - Check the knot vector: - >>> spl.get_knots() array([-3., -1., 0., 1., 3.]) - Methods - __call__(x[, nu, ext]) - Evaluate spline (or its nu-th derivative) at positions x. - antiderivative([n]) - Construct a new spline representing the antiderivative of this spline. - derivative([n]) - Construct a new spline representing the derivative of this spline. - derivatives(x) - Return all derivatives of the spline at the point x. - get_coeffs() - Return spline coefficients. - get_knots() - Return positions of interior knots of the spline. - get_residual() - Return weighted sum of squared residuals of the spline approximation. - integral(a, b) - Return definite integral of the spline between two given points. - roots() - Return the zeros of the spline. - set_smoothing_factor(s) - Continue spline computation with the given smoothing factor s and with the knots found at the last call. 
