scipy.interpolate.splantider¶
- scipy.interpolate.splantider(tck, n=1)[source]¶
- Compute the spline for the antiderivative (integral) of a given spline. - Parameters: - tck : tuple of (t, c, k) - Spline whose antiderivative to compute - n : int, optional - Order of antiderivative to evaluate. Default: 1 - Returns: - tck_ader : tuple of (t2, c2, k2) - Spline of order k2=k+n representing the antiderivative of the input spline. - Notes - The splder function is the inverse operation of this function. Namely, splder(splantider(tck)) is identical to tck, modulo rounding error. - New in version 0.13.0. - Examples - >>> from scipy.interpolate import splrep, splder, splantider, splev >>> x = np.linspace(0, np.pi/2, 70) >>> y = 1 / np.sqrt(1 - 0.8*np.sin(x)**2) >>> spl = splrep(x, y) - The derivative is the inverse operation of the antiderivative, although some floating point error accumulates: - >>> splev(1.7, spl), splev(1.7, splder(splantider(spl))) (array(2.1565429877197317), array(2.1565429877201865)) - Antiderivative can be used to evaluate definite integrals: - >>> ispl = splantider(spl) >>> splev(np.pi/2, ispl) - splev(0, ispl) 2.2572053588768486 - This is indeed an approximation to the complete elliptic integral \(K(m) = \int_0^{\pi/2} [1 - m\sin^2 x]^{-1/2} dx\): - >>> from scipy.special import ellipk >>> ellipk(0.8) 2.2572053268208538 
