scipy.linalg.interpolative.svd¶
- scipy.linalg.interpolative.svd(A, eps_or_k, rand=True)[source]¶
- Compute SVD of a matrix via an ID. - An SVD of a matrix A is a factorization: - A = numpy.dot(U, numpy.dot(numpy.diag(S), V.conj().T)) - where U and V have orthonormal columns and S is nonnegative. - The SVD can be computed to any relative precision or rank (depending on the value of eps_or_k). - See also interp_decomp and id_to_svd. - Parameters: - A : numpy.ndarray or scipy.sparse.linalg.LinearOperator - Matrix to be factored, given as either a numpy.ndarray or a scipy.sparse.linalg.LinearOperator with the matvec and rmatvec methods (to apply the matrix and its adjoint). - eps_or_k : float or int - Relative error (if eps_or_k < 1) or rank (if eps_or_k >= 1) of approximation. - rand : bool, optional - Whether to use random sampling if A is of type numpy.ndarray (randomized algorithms are always used if A is of type scipy.sparse.linalg.LinearOperator). - Returns: - U : numpy.ndarray - Left singular vectors. - S : numpy.ndarray - Singular values. - V : numpy.ndarray - Right singular vectors. 
