scipy.optimize.anderson¶
- scipy.optimize.anderson(F, xin, iter=None, alpha=None, w0=0.01, M=5, verbose=False, maxiter=None, f_tol=None, f_rtol=None, x_tol=None, x_rtol=None, tol_norm=None, line_search='armijo', callback=None, **kw)[source]¶
- Find a root of a function, using (extended) Anderson mixing. - The Jacobian is formed by for a ‘best’ solution in the space spanned by last M vectors. As a result, only a MxM matrix inversions and MxN multiplications are required. [Ey] - Parameters: - F : function(x) -> f - Function whose root to find; should take and return an array-like object. - x0 : array_like - Initial guess for the solution - alpha : float, optional - Initial guess for the Jacobian is (-1/alpha). - M : float, optional - Number of previous vectors to retain. Defaults to 5. - w0 : float, optional - Regularization parameter for numerical stability. Compared to unity, good values of the order of 0.01. - iter : int, optional - Number of iterations to make. If omitted (default), make as many as required to meet tolerances. - verbose : bool, optional - Print status to stdout on every iteration. - maxiter : int, optional - Maximum number of iterations to make. If more are needed to meet convergence, NoConvergence is raised. - f_tol : float, optional - Absolute tolerance (in max-norm) for the residual. If omitted, default is 6e-6. - f_rtol : float, optional - Relative tolerance for the residual. If omitted, not used. - x_tol : float, optional - Absolute minimum step size, as determined from the Jacobian approximation. If the step size is smaller than this, optimization is terminated as successful. If omitted, not used. - x_rtol : float, optional - Relative minimum step size. If omitted, not used. - tol_norm : function(vector) -> scalar, optional - Norm to use in convergence check. Default is the maximum norm. - line_search : {None, ‘armijo’ (default), ‘wolfe’}, optional - Which type of a line search to use to determine the step size in the direction given by the Jacobian approximation. Defaults to ‘armijo’. - callback : function, optional - Optional callback function. It is called on every iteration as callback(x, f) where x is the current solution and f the corresponding residual. - Returns: - sol : ndarray - An array (of similar array type as x0) containing the final solution. - Raises: - NoConvergence - When a solution was not found. - References - [Ey] - (1, 2) - Eyert, J. Comp. Phys., 124, 271 (1996).
 
