scipy.optimize.fmin_bfgs¶
- scipy.optimize.fmin_bfgs(f, x0, fprime=None, args=(), gtol=1e-05, norm=inf, epsilon=1.4901161193847656e-08, maxiter=None, full_output=0, disp=1, retall=0, callback=None)[source]¶
- Minimize a function using the BFGS algorithm. - Parameters: - f : callable f(x,*args) - Objective function to be minimized. - x0 : ndarray - Initial guess. - fprime : callable f’(x,*args), optional - Gradient of f. - args : tuple, optional - Extra arguments passed to f and fprime. - gtol : float, optional - Gradient norm must be less than gtol before successful termination. - norm : float, optional - Order of norm (Inf is max, -Inf is min) - epsilon : int or ndarray, optional - If fprime is approximated, use this value for the step size. - callback : callable, optional - An optional user-supplied function to call after each iteration. Called as callback(xk), where xk is the current parameter vector. - maxiter : int, optional - Maximum number of iterations to perform. - full_output : bool, optional - If True,return fopt, func_calls, grad_calls, and warnflag in addition to xopt. - disp : bool, optional - Print convergence message if True. - retall : bool, optional - Return a list of results at each iteration if True. - Returns: - xopt : ndarray - Parameters which minimize f, i.e. f(xopt) == fopt. - fopt : float - Minimum value. - gopt : ndarray - Value of gradient at minimum, f’(xopt), which should be near 0. - Bopt : ndarray - Value of 1/f’‘(xopt), i.e. the inverse hessian matrix. - func_calls : int - Number of function_calls made. - grad_calls : int - Number of gradient calls made. - warnflag : integer - 1 : Maximum number of iterations exceeded. 2 : Gradient and/or function calls not changing. - allvecs : list - OptimizeResult at each iteration. Only returned if retall is True. - See also - minimize
- Interface to minimization algorithms for multivariate functions. See the ‘BFGS’ method in particular.
 - Notes - Optimize the function, f, whose gradient is given by fprime using the quasi-Newton method of Broyden, Fletcher, Goldfarb, and Shanno (BFGS) - References - Wright, and Nocedal ‘Numerical Optimization’, 1999, pg. 198. 
