scipy.optimize.fminbound¶
- scipy.optimize.fminbound(func, x1, x2, args=(), xtol=1e-05, maxfun=500, full_output=0, disp=1)[source]¶
- Bounded minimization for scalar functions. - Parameters: - func : callable f(x,*args) - Objective function to be minimized (must accept and return scalars). - x1, x2 : float or array scalar - The optimization bounds. - args : tuple, optional - Extra arguments passed to function. - xtol : float, optional - The convergence tolerance. - maxfun : int, optional - Maximum number of function evaluations allowed. - full_output : bool, optional - If True, return optional outputs. - disp : int, optional - If non-zero, print messages.
- 0 : no message printing. 1 : non-convergence notification messages only. 2 : print a message on convergence too. 3 : print iteration results. 
 - Returns: - xopt : ndarray - Parameters (over given interval) which minimize the objective function. - fval : number - The function value at the minimum point. - ierr : int - An error flag (0 if converged, 1 if maximum number of function calls reached). - numfunc : int - The number of function calls made. - See also - minimize_scalar
- Interface to minimization algorithms for scalar univariate functions. See the ‘Bounded’ method in particular.
 - Notes - Finds a local minimizer of the scalar function func in the interval x1 < xopt < x2 using Brent’s method. (See brent for auto-bracketing). 
