scipy.sparse.linalg.svds¶
- scipy.sparse.linalg.svds(A, k=6, ncv=None, tol=0, which='LM', v0=None, maxiter=None, return_singular_vectors=True)[source]¶
- Compute the largest k singular values/vectors for a sparse matrix. - Parameters: - A : {sparse matrix, LinearOperator} - Array to compute the SVD on, of shape (M, N) - k : int, optional - Number of singular values and vectors to compute. Must be 1 <= k < min(A.shape). - ncv : int, optional - The number of Lanczos vectors generated ncv must be greater than k+1 and smaller than n; it is recommended that ncv > 2*k Default: min(n, 2*k + 1) - tol : float, optional - Tolerance for singular values. Zero (default) means machine precision. - which : str, [‘LM’ | ‘SM’], optional - Which k singular values to find: - ‘LM’ : largest singular values
- ‘SM’ : smallest singular values
 - New in version 0.12.0. - v0 : ndarray, optional - Starting vector for iteration, of length min(A.shape). Should be an (approximate) left singular vector if N > M and a right singular vector otherwise. Default: random - New in version 0.12.0. - maxiter : int, optional - Maximum number of iterations. - New in version 0.12.0. - return_singular_vectors : bool or str, optional - True: return singular vectors (True) in addition to singular values.
 - New in version 0.12.0. - “u”: only return the u matrix, without computing vh (if N > M).
- “vh”: only return the vh matrix, without computing u (if N <= M).
 - New in version 0.16.0. - Returns: - u : ndarray, shape=(M, k) - Unitary matrix having left singular vectors as columns. If return_singular_vectors is “vh”, this variable is not computed, and None is returned instead. - s : ndarray, shape=(k,) - The singular values. - vt : ndarray, shape=(k, N) - Unitary matrix having right singular vectors as rows. If return_singular_vectors is “u”, this variable is not computed, and None is returned instead. - Notes - This is a naive implementation using ARPACK as an eigensolver on A.H * A or A * A.H, depending on which one is more efficient. 
