scipy.special.ellip_harm_2¶
- scipy.special.ellip_harm_2(h2, k2, n, p, s)[source]¶
- Ellipsoidal harmonic functions F^p_n(l) - These are also known as Lame functions of the second kind, and are solutions to the Lame equation: \[(s^2 - h^2)(s^2 - k^2)F''(s) + s(2s^2 - h^2 - k^2)F'(s) + (a - q s^2)F(s) = 0\]- where \(q = (n+1)n\) and \(a\) is the eigenvalue (not returned) corresponding to the solutions. - Parameters: - h2 : float - h**2 - k2 : float - k**2; should be larger than h**2 - n : int - Degree. - p : int - Order, can range between [1,2n+1]. - s : float - Coordinate - Returns: - F : float - The harmonic \(F^p_n(s)\) - See also - Notes - Lame functions of the second kind are related to the functions of the first kind: \[F^p_n(s)=(2n + 1)E^p_n(s)\int_{0}^{1/s}\frac{du}{(E^p_n(1/u))^2\sqrt{(1-u^2k^2)(1-u^2h^2)}}\]- New in version 0.15.0. - Examples - >>> from scipy.special import ellip_harm_2 >>> w = ellip_harm_2(5,8,2,1,10) >>> w 0.00108056853382 
