scipy.special.js_roots¶
- scipy.special.js_roots(n, p1, q1, mu=False)[source]¶
- Gauss-Jacobi (shifted) quadrature. - Computes the sample points and weights for Gauss-Jacobi (shifted) quadrature. The sample points are the roots of the n-th degree shifted Jacobi polynomial, \(G^{p,q}_n(x)\). These sample points and weights correctly integrate polynomials of degree \(2n - 1\) or less over the interval \([0, 1]\) with weight function \(f(x) = (1 - x)^{p-q} x^{q-1}\) - Parameters: - n : int - quadrature order - p1 : float - (p1 - q1) must be > -1 - q1 : float - q1 must be > 0 - mu : bool, optional - If True, return the sum of the weights, optional. - Returns: - x : ndarray - Sample points - w : ndarray - Weights - mu : float - Sum of the weights 
