scipy.special.mathieu_even_coef¶
- scipy.special.mathieu_even_coef(m, q)[source]¶
- Fourier coefficients for even Mathieu and modified Mathieu functions. - The Fourier series of the even solutions of the Mathieu differential equation are of the form \[\mathrm{ce}_{2n}(z, q) = \sum_{k=0}^{\infty} A_{(2n)}^{(2k)} \cos 2kz\]\[\mathrm{ce}_{2n+1}(z, q) = \sum_{k=0}^{\infty} A_{(2n+1)}^{(2k+1)} \cos (2k+1)z\]- This function returns the coefficients \(A_{(2n)}^{(2k)}\) for even input m=2n, and the coefficients \(A_{(2n+1)}^{(2k+1)}\) for odd input m=2n+1. - Parameters: - m : int - Order of Mathieu functions. Must be non-negative. - q : float (>=0) - Parameter of Mathieu functions. Must be non-negative. - Returns: - Ak : ndarray - Even or odd Fourier coefficients, corresponding to even or odd m. - References - [R337] - Zhang, Shanjie and Jin, Jianming. “Computation of Special Functions”, John Wiley and Sons, 1996. http://jin.ece.illinois.edu/specfunc.html - [R338] - NIST Digital Library of Mathematical Functions http://dlmf.nist.gov/28.4#i 
