scipy.special.pseudo_huber¶
- scipy.special.pseudo_huber(delta, r) = <ufunc 'pseudo_huber'>¶
- Pseudo-Huber loss function. \[\mathrm{pseudo\_huber}(\delta, r) = \delta^2 \left( \sqrt{ 1 + \left( \frac{r}{\delta} \right)^2 } - 1 \right)\]- Parameters: - delta : ndarray - Input array, indicating the soft quadratic vs. linear loss changepoint. - r : ndarray - Input array, possibly representing residuals. - Returns: - res : ndarray - The computed Pseudo-Huber loss function values. - Notes - This function is convex in \(r\). - New in version 0.15.0. 
