scipy.special.sinc¶
- scipy.special.sinc(x)[source]¶
- Return the sinc function. - The sinc function is \(\sin(\pi x)/(\pi x)\). - Parameters: - x : ndarray - Array (possibly multi-dimensional) of values for which to to calculate sinc(x). - Returns: - out : ndarray - sinc(x), which has the same shape as the input. - Notes - sinc(0) is the limit value 1. - The name sinc is short for “sine cardinal” or “sinus cardinalis”. - The sinc function is used in various signal processing applications, including in anti-aliasing, in the construction of a Lanczos resampling filter, and in interpolation. - For bandlimited interpolation of discrete-time signals, the ideal interpolation kernel is proportional to the sinc function. - References - [R347] - Weisstein, Eric W. “Sinc Function.” From MathWorld–A Wolfram Web Resource. http://mathworld.wolfram.com/SincFunction.html - [R348] - Wikipedia, “Sinc function”, http://en.wikipedia.org/wiki/Sinc_function - Examples - >>> x = np.arange(-20., 21.)/5. >>> np.sinc(x) array([ -3.89804309e-17, -4.92362781e-02, -8.40918587e-02, -8.90384387e-02, -5.84680802e-02, 3.89804309e-17, 6.68206631e-02, 1.16434881e-01, 1.26137788e-01, 8.50444803e-02, -3.89804309e-17, -1.03943254e-01, -1.89206682e-01, -2.16236208e-01, -1.55914881e-01, 3.89804309e-17, 2.33872321e-01, 5.04551152e-01, 7.56826729e-01, 9.35489284e-01, 1.00000000e+00, 9.35489284e-01, 7.56826729e-01, 5.04551152e-01, 2.33872321e-01, 3.89804309e-17, -1.55914881e-01, -2.16236208e-01, -1.89206682e-01, -1.03943254e-01, -3.89804309e-17, 8.50444803e-02, 1.26137788e-01, 1.16434881e-01, 6.68206631e-02, 3.89804309e-17, -5.84680802e-02, -8.90384387e-02, -8.40918587e-02, -4.92362781e-02, -3.89804309e-17]) - >>> import matplotlib.pyplot as plt >>> plt.plot(x, np.sinc(x)) [<matplotlib.lines.Line2D object at 0x...>] >>> plt.title("Sinc Function") <matplotlib.text.Text object at 0x...> >>> plt.ylabel("Amplitude") <matplotlib.text.Text object at 0x...> >>> plt.xlabel("X") <matplotlib.text.Text object at 0x...> >>> plt.show()   - It works in 2-D as well: - >>> x = np.arange(-200., 201.)/50. >>> xx = np.outer(x, x) >>> plt.imshow(np.sinc(xx)) <matplotlib.image.AxesImage object at 0x...>   
