scipy.stats.cumfreq¶
- scipy.stats.cumfreq(a, numbins=10, defaultreallimits=None, weights=None)[source]¶
- Returns a cumulative frequency histogram, using the histogram function. - A cumulative histogram is a mapping that counts the cumulative number of observations in all of the bins up to the specified bin. - Parameters: - a : array_like - Input array. - numbins : int, optional - The number of bins to use for the histogram. Default is 10. - defaultreallimits : tuple (lower, upper), optional - The lower and upper values for the range of the histogram. If no value is given, a range slightly larger than the range of the values in a is used. Specifically (a.min() - s, a.max() + s), where s = (1/2)(a.max() - a.min()) / (numbins - 1). - weights : array_like, optional - The weights for each value in a. Default is None, which gives each value a weight of 1.0 - Returns: - cumcount : ndarray - Binned values of cumulative frequency. - lowerlimit : float - Lower real limit - binsize : float - Width of each bin. - extrapoints : int - Extra points. - Examples - >>> import matplotlib.pyplot as plt >>> from scipy import stats >>> x = [1, 4, 2, 1, 3, 1] >>> res = stats.cumfreq(x, numbins=4, defaultreallimits=(1.5, 5)) >>> res.cumcount array([ 1., 2., 3., 3.]) >>> res.extrapoints 3 - Create a normal distribution with 1000 random values - >>> rng = np.random.RandomState(seed=12345) >>> samples = stats.norm.rvs(size=1000, random_state=rng) - Calculate cumulative frequencies - >>> res = stats.cumfreq(samples, numbins=25) - Calculate space of values for x - >>> x = res.lowerlimit + np.linspace(0, res.binsize*res.cumcount.size, ... res.cumcount.size) - Plot histogram and cumulative histogram - >>> fig = plt.figure(figsize=(10, 4)) >>> ax1 = fig.add_subplot(1, 2, 1) >>> ax2 = fig.add_subplot(1, 2, 2) >>> ax1.hist(samples, bins=25) >>> ax1.set_title('Histogram') >>> ax2.bar(x, res.cumcount, width=res.binsize) >>> ax2.set_title('Cumulative histogram') >>> ax2.set_xlim([x.min(), x.max()]) - >>> plt.show()   
