scipy.stats.gausshyper¶
- scipy.stats.gausshyper = <scipy.stats._continuous_distns.gausshyper_gen object at 0x5853e50>[source]¶
- A Gauss hypergeometric continuous random variable. - As an instance of the rv_continuous class, gausshyper object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution. - Notes - The probability density function for gausshyper is: - gausshyper.pdf(x, a, b, c, z) = C * x**(a-1) * (1-x)**(b-1) * (1+z*x)**(-c)- for 0 <= x <= 1, a > 0, b > 0, and C = 1 / (B(a, b) F[2, 1](c, a; a+b; -z)) - gausshyper takes a, b, c and z as shape parameters. - The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the loc and scale parameters. Specifically, gausshyper.pdf(x, a, b, c, z, loc, scale) is identically equivalent to gausshyper.pdf(y, a, b, c, z) / scale with y = (x - loc) / scale. - Examples - >>> from scipy.stats import gausshyper >>> import matplotlib.pyplot as plt >>> fig, ax = plt.subplots(1, 1) - Calculate a few first moments: - >>> a, b, c, z = 13.8, 3.12, 2.51, 5.18 >>> mean, var, skew, kurt = gausshyper.stats(a, b, c, z, moments='mvsk') - Display the probability density function (pdf): - >>> x = np.linspace(gausshyper.ppf(0.01, a, b, c, z), ... gausshyper.ppf(0.99, a, b, c, z), 100) >>> ax.plot(x, gausshyper.pdf(x, a, b, c, z), ... 'r-', lw=5, alpha=0.6, label='gausshyper pdf') - Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed. - Freeze the distribution and display the frozen pdf: - >>> rv = gausshyper(a, b, c, z) >>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf') - Check accuracy of cdf and ppf: - >>> vals = gausshyper.ppf([0.001, 0.5, 0.999], a, b, c, z) >>> np.allclose([0.001, 0.5, 0.999], gausshyper.cdf(vals, a, b, c, z)) True - Generate random numbers: - >>> r = gausshyper.rvs(a, b, c, z, size=1000) - And compare the histogram: - >>> ax.hist(r, normed=True, histtype='stepfilled', alpha=0.2) >>> ax.legend(loc='best', frameon=False) >>> plt.show()   - Methods - rvs(a, b, c, z, loc=0, scale=1, size=1, random_state=None) - Random variates. - pdf(x, a, b, c, z, loc=0, scale=1) - Probability density function. - logpdf(x, a, b, c, z, loc=0, scale=1) - Log of the probability density function. - cdf(x, a, b, c, z, loc=0, scale=1) - Cumulative density function. - logcdf(x, a, b, c, z, loc=0, scale=1) - Log of the cumulative density function. - sf(x, a, b, c, z, loc=0, scale=1) - Survival function (also defined as 1 - cdf, but sf is sometimes more accurate). - logsf(x, a, b, c, z, loc=0, scale=1) - Log of the survival function. - ppf(q, a, b, c, z, loc=0, scale=1) - Percent point function (inverse of cdf — percentiles). - isf(q, a, b, c, z, loc=0, scale=1) - Inverse survival function (inverse of sf). - moment(n, a, b, c, z, loc=0, scale=1) - Non-central moment of order n - stats(a, b, c, z, loc=0, scale=1, moments='mv') - Mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’). - entropy(a, b, c, z, loc=0, scale=1) - (Differential) entropy of the RV. - fit(data, a, b, c, z, loc=0, scale=1) - Parameter estimates for generic data. - expect(func, args=(a, b, c, z), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds) - Expected value of a function (of one argument) with respect to the distribution. - median(a, b, c, z, loc=0, scale=1) - Median of the distribution. - mean(a, b, c, z, loc=0, scale=1) - Mean of the distribution. - var(a, b, c, z, loc=0, scale=1) - Variance of the distribution. - std(a, b, c, z, loc=0, scale=1) - Standard deviation of the distribution. - interval(alpha, a, b, c, z, loc=0, scale=1) - Endpoints of the range that contains alpha percent of the distribution 
