scipy.stats.jarque_bera¶
- scipy.stats.jarque_bera(x)[source]¶
- Perform the Jarque-Bera goodness of fit test on sample data. - The Jarque-Bera test tests whether the sample data has the skewness and kurtosis matching a normal distribution. - Note that this test only works for a large enough number of data samples (>2000) as the test statistic asymptotically has a Chi-squared distribution with 2 degrees of freedom. - Parameters: - x : array_like - Observations of a random variable. - Returns: - jb_value : float - The test statistic. - p : float - The p-value for the hypothesis test. - References - [R404] - Jarque, C. and Bera, A. (1980) “Efficient tests for normality, homoscedasticity and serial independence of regression residuals”, 6 Econometric Letters 255-259. - Examples - >>> from scipy import stats >>> np.random.seed(987654321) >>> x = np.random.normal(0, 1, 100000) >>> y = np.random.rayleigh(1, 100000) >>> stats.jarque_bera(x) (4.7165707989581342, 0.09458225503041906) >>> stats.jarque_bera(y) (6713.7098548143422, 0.0) 
