scipy.stats.matrix_normal¶
- scipy.stats.matrix_normal = <scipy.stats._multivariate.matrix_normal_gen object at 0x5b43890>[source]¶
- A matrix normal random variable. - The mean keyword specifies the mean. The rowcov keyword specifies the among-row covariance matrix. The ‘colcov’ keyword specifies the among-column covariance matrix. - Parameters: - X : array_like - Quantiles, with the last two axes of X denoting the components. - mean : array_like, optional - Mean of the distribution (default: None) - rowcov : array_like, optional - Among-row covariance matrix of the distribution (default: 1) - colcov : array_like, optional - Among-column covariance matrix of the distribution (default: 1) - random_state : None or int or np.random.RandomState instance, optional - If int or RandomState, use it for drawing the random variates. If None (or np.random), the global np.random state is used. Default is None. - Alternatively, the object may be called (as a function) to fix the mean - and covariance parameters, returning a “frozen” matrix normal - random variable: - rv = matrix_normal(mean=None, rowcov=1, colcov=1) - Frozen object with the same methods but holding the given mean and covariance fixed.
 - Notes - If mean is set to None then a matrix of zeros is used for the mean.
- The dimensions of this matrix are inferred from the shape of rowcov and colcov, if these are provided, or set to 1 if ambiguous. - rowcov and colcov can be two-dimensional array_likes specifying the covariance matrices directly. Alternatively, a one-dimensional array will be be interpreted as the entries of a diagonal matrix, and a scalar or zero-dimensional array will be interpreted as this value times the identity matrix. 
 - The covariance matrices specified by rowcov and colcov must be (symmetric) positive definite. If the samples in X are \(m \times n\), then rowcov must be \(m \times m\) and colcov must be \(n \times n\). mean must be the same shape as X. - The probability density function for matrix_normal is \[f(X) = (2 \pi)^{-\frac{mn}{2}}|U|^{-\frac{n}{2}} |V|^{-\frac{m}{2}} \exp\left( -\frac{1}{2} \mathrm{Tr}\left[ U^{-1} (X-M) V^{-1} (X-M)^T \right] \right),\]- where \(M\) is the mean, \(U\) the among-row covariance matrix, \(V\) the among-column covariance matrix. - The allow_singular behaviour of the multivariate_normal distribution is not currently supported. Covariance matrices must be full rank. - The matrix_normal distribution is closely related to the multivariate_normal distribution. Specifically, \(\mathrm{Vec}(X)\) (the vector formed by concatenating the columns of \(X\)) has a multivariate normal distribution with mean \(\mathrm{Vec}(M)\) and covariance \(V \otimes U\) (where \(\otimes\) is the Kronecker product). Sampling and pdf evaluation are \(\mathcal{O}(m^3 + n^3 + m^2 n + m n^2)\) for the matrix normal, but \(\mathcal{O}(m^3 n^3)\) for the equivalent multivariate normal, making this equivalent form algorithmically inefficient. - New in version 0.17.0. - Examples - >>> from scipy.stats import matrix_normal - >>> M = np.arange(6).reshape(3,2); M array([[0, 1], [2, 3], [4, 5]]) >>> U = np.diag([1,2,3]); U array([[1, 0, 0], [0, 2, 0], [0, 0, 3]]) >>> V = 0.3*np.identity(2); V array([[ 0.3, 0. ], [ 0. , 0.3]]) >>> X = M + 0.1; X array([[ 0.1, 1.1], [ 2.1, 3.1], [ 4.1, 5.1]]) >>> matrix_normal.pdf(X, mean=M, rowcov=U, colcov=V) 0.023410202050005054 - >>> # Equivalent multivariate normal >>> from scipy.stats import multivariate_normal >>> vectorised_X = X.T.flatten() >>> equiv_mean = M.T.flatten() >>> equiv_cov = np.kron(V,U) >>> multivariate_normal.pdf(vectorised_X, mean=equiv_mean, cov=equiv_cov) 0.023410202050005054 - Methods - pdf(X, mean=None, rowcov=1, colcov=1) - Probability density function. - logpdf(X, mean=None, rowcov=1, colcov=1) - Log of the probability density function. - rvs(mean=None, rowcov=1, colcov=1, size=1, random_state=None) - Draw random samples. 
