scipy.stats.mstats.describe¶
- scipy.stats.mstats.describe(a, axis=0, ddof=0, bias=True)[source]¶
- Computes several descriptive statistics of the passed array. - Parameters: - a : array_like - Data array - axis : int or None, optional - Axis along which to calculate statistics. Default 0. If None, compute over the whole array a. - ddof : int, optional - degree of freedom (default 0); note that default ddof is different from the same routine in stats.describe - bias : bool, optional - If False, then the skewness and kurtosis calculations are corrected for statistical bias. - Returns: - nobs : int - (size of the data (discarding missing values) - minmax : (int, int) - min, max - mean : float - arithmetic mean - variance : float - unbiased variance - skewness : float - biased skewness - kurtosis : float - biased kurtosis - Examples - >>> from scipy.stats.mstats import describe >>> ma = np.ma.array(range(6), mask=[0, 0, 0, 1, 1, 1]) >>> describe(ma) DescribeResult(nobs=array(3), minmax=(masked_array(data = 0, mask = False, fill_value = 999999) , masked_array(data = 2, mask = False, fill_value = 999999) ), mean=1.0, variance=0.66666666666666663, skewness=masked_array(data = 0.0, mask = False, fill_value = 1e+20) , kurtosis=-1.5) 
