scipy.stats.mstats.theilslopes¶
- scipy.stats.mstats.theilslopes(y, x=None, alpha=0.95)[source]¶
- Computes the Theil-Sen estimator for a set of points (x, y). - theilslopes implements a method for robust linear regression. It computes the slope as the median of all slopes between paired values. - Parameters: - y : array_like - Dependent variable. - x : array_like or None, optional - Independent variable. If None, use arange(len(y)) instead. - alpha : float, optional - Confidence degree between 0 and 1. Default is 95% confidence. Note that alpha is symmetric around 0.5, i.e. both 0.1 and 0.9 are interpreted as “find the 90% confidence interval”. - Returns: - medslope : float - Theil slope. - medintercept : float - Intercept of the Theil line, as median(y) - medslope*median(x). - lo_slope : float - Lower bound of the confidence interval on medslope. - up_slope : float - Upper bound of the confidence interval on medslope. - Notes - For more details on theilslopes, see stats.theilslopes. 
