scipy.stats.tukeylambda¶
- scipy.stats.tukeylambda = <scipy.stats._continuous_distns.tukeylambda_gen object at 0x596c610>[source]¶
- A Tukey-Lamdba continuous random variable. - As an instance of the rv_continuous class, tukeylambda object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution. - Notes - A flexible distribution, able to represent and interpolate between the following distributions: - Cauchy (lam=-1)
- logistic (lam=0.0)
- approx Normal (lam=0.14)
- u-shape (lam = 0.5)
- uniform from -1 to 1 (lam = 1)
 - tukeylambda takes lam as a shape parameter. - The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the loc and scale parameters. Specifically, tukeylambda.pdf(x, lam, loc, scale) is identically equivalent to tukeylambda.pdf(y, lam) / scale with y = (x - loc) / scale. - Examples - >>> from scipy.stats import tukeylambda >>> import matplotlib.pyplot as plt >>> fig, ax = plt.subplots(1, 1) - Calculate a few first moments: - >>> lam = 3.13 >>> mean, var, skew, kurt = tukeylambda.stats(lam, moments='mvsk') - Display the probability density function (pdf): - >>> x = np.linspace(tukeylambda.ppf(0.01, lam), ... tukeylambda.ppf(0.99, lam), 100) >>> ax.plot(x, tukeylambda.pdf(x, lam), ... 'r-', lw=5, alpha=0.6, label='tukeylambda pdf') - Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed. - Freeze the distribution and display the frozen pdf: - >>> rv = tukeylambda(lam) >>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf') - Check accuracy of cdf and ppf: - >>> vals = tukeylambda.ppf([0.001, 0.5, 0.999], lam) >>> np.allclose([0.001, 0.5, 0.999], tukeylambda.cdf(vals, lam)) True - Generate random numbers: - >>> r = tukeylambda.rvs(lam, size=1000) - And compare the histogram: - >>> ax.hist(r, normed=True, histtype='stepfilled', alpha=0.2) >>> ax.legend(loc='best', frameon=False) >>> plt.show()   - Methods - rvs(lam, loc=0, scale=1, size=1, random_state=None) - Random variates. - pdf(x, lam, loc=0, scale=1) - Probability density function. - logpdf(x, lam, loc=0, scale=1) - Log of the probability density function. - cdf(x, lam, loc=0, scale=1) - Cumulative density function. - logcdf(x, lam, loc=0, scale=1) - Log of the cumulative density function. - sf(x, lam, loc=0, scale=1) - Survival function (also defined as 1 - cdf, but sf is sometimes more accurate). - logsf(x, lam, loc=0, scale=1) - Log of the survival function. - ppf(q, lam, loc=0, scale=1) - Percent point function (inverse of cdf — percentiles). - isf(q, lam, loc=0, scale=1) - Inverse survival function (inverse of sf). - moment(n, lam, loc=0, scale=1) - Non-central moment of order n - stats(lam, loc=0, scale=1, moments='mv') - Mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’). - entropy(lam, loc=0, scale=1) - (Differential) entropy of the RV. - fit(data, lam, loc=0, scale=1) - Parameter estimates for generic data. - expect(func, args=(lam,), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds) - Expected value of a function (of one argument) with respect to the distribution. - median(lam, loc=0, scale=1) - Median of the distribution. - mean(lam, loc=0, scale=1) - Mean of the distribution. - var(lam, loc=0, scale=1) - Variance of the distribution. - std(lam, loc=0, scale=1) - Standard deviation of the distribution. - interval(alpha, lam, loc=0, scale=1) - Endpoints of the range that contains alpha percent of the distribution 
