root(method=’linearmixing’)¶
- scipy.optimize.root(fun, x0, args=(), method='linearmixing', tol=None, callback=None, options={})
- See also - For documentation for the rest of the parameters, see scipy.optimize.root - Options: - nit : int, optional - Number of iterations to make. If omitted (default), make as many as required to meet tolerances. - disp : bool, optional - Print status to stdout on every iteration. - maxiter : int, optional - Maximum number of iterations to make. If more are needed to meet convergence, NoConvergence is raised. - ftol : float, optional - Relative tolerance for the residual. If omitted, not used. - fatol : float, optional - Absolute tolerance (in max-norm) for the residual. If omitted, default is 6e-6. - xtol : float, optional - Relative minimum step size. If omitted, not used. - xatol : float, optional - Absolute minimum step size, as determined from the Jacobian approximation. If the step size is smaller than this, optimization is terminated as successful. If omitted, not used. - tol_norm : function(vector) -> scalar, optional - Norm to use in convergence check. Default is the maximum norm. - line_search : {None, ‘armijo’ (default), ‘wolfe’}, optional - Which type of a line search to use to determine the step size in the direction given by the Jacobian approximation. Defaults to ‘armijo’. - jac_options : dict, optional - Options for the respective Jacobian approximation. - alpha : float, optional
- initial guess for the jacobian is (-1/alpha). 
 
