Cross-Correlation (Phase Correlation)ΒΆ

In this example, we use phase correlation to identify the relative shift between two similar-sized images.

The register_translation function uses cross-correlation in Fourier space, optionally employing an upsampled matrix-multiplication DFT to achieve arbitrary subpixel precision. [1]

[1]Manuel Guizar-Sicairos, Samuel T. Thurman, and James R. Fienup, “Efficient subpixel image registration algorithms,” Optics Letters 33, 156-158 (2008).
../../_images/plot_register_translation_1.png ../../_images/plot_register_translation_2.png
import numpy as np
import matplotlib.pyplot as plt

from skimage import data
from skimage.feature import register_translation
from skimage.feature.register_translation import _upsampled_dft
from scipy.ndimage import fourier_shift

image = data.camera()
shift = (-2.4, 1.32)
# (-2.4, 1.32) pixel offset relative to reference coin
offset_image = fourier_shift(np.fft.fftn(image), shift)
offset_image = np.fft.ifftn(offset_image)
print("Known offset (y, x):")
print(shift)

# pixel precision first
shift, error, diffphase = register_translation(image, offset_image)

fig = plt.figure(figsize=(8, 3))
ax1 = plt.subplot(1, 3, 1, adjustable='box-forced')
ax2 = plt.subplot(1, 3, 2, sharex=ax1, sharey=ax1, adjustable='box-forced')
ax3 = plt.subplot(1, 3, 3)

ax1.imshow(image)
ax1.set_axis_off()
ax1.set_title('Reference image')

ax2.imshow(offset_image.real)
ax2.set_axis_off()
ax2.set_title('Offset image')

# View the output of a cross-correlation to show what the algorithm is
#    doing behind the scenes
image_product = np.fft.fft2(image) * np.fft.fft2(offset_image).conj()
cc_image = np.fft.fftshift(np.fft.ifft2(image_product))
ax3.imshow(cc_image.real)
ax3.set_axis_off()
ax3.set_title("Cross-correlation")

plt.show()

print("Detected pixel offset (y, x):")
print(shift)

# subpixel precision
shift, error, diffphase = register_translation(image, offset_image, 100)

fig = plt.figure(figsize=(8, 3))
ax1 = plt.subplot(1, 3, 1, adjustable='box-forced')
ax2 = plt.subplot(1, 3, 2, sharex=ax1, sharey=ax1, adjustable='box-forced')
ax3 = plt.subplot(1, 3, 3)

ax1.imshow(image)
ax1.set_axis_off()
ax1.set_title('Reference image')

ax2.imshow(offset_image.real)
ax2.set_axis_off()
ax2.set_title('Offset image')

# Calculate the upsampled DFT, again to show what the algorithm is doing
#    behind the scenes.  Constants correspond to calculated values in routine.
#    See source code for details.
cc_image = _upsampled_dft(image_product, 150, 100, (shift*100)+75).conj()
ax3.imshow(cc_image.real)
ax3.set_axis_off()
ax3.set_title("Supersampled XC sub-area")


plt.show()

print("Detected subpixel offset (y, x):")
print(shift)

Python source code: download (generated using skimage 0.12.3)

IPython Notebook: download (generated using skimage 0.12.3)