.. note::
    :class: sphx-glr-download-link-note

    Click :ref:`here <sphx_glr_download_auto_examples_classification_plot_classifier_comparison.py>` to download the full example code
.. rst-class:: sphx-glr-example-title

.. _sphx_glr_auto_examples_classification_plot_classifier_comparison.py:


=====================
Classifier comparison
=====================

A comparison of a several classifiers in scikit-learn on synthetic datasets.
The point of this example is to illustrate the nature of decision boundaries
of different classifiers.
This should be taken with a grain of salt, as the intuition conveyed by
these examples does not necessarily carry over to real datasets.

Particularly in high-dimensional spaces, data can more easily be separated
linearly and the simplicity of classifiers such as naive Bayes and linear SVMs
might lead to better generalization than is achieved by other classifiers.

The plots show training points in solid colors and testing points
semi-transparent. The lower right shows the classification accuracy on the test
set.




.. image:: /auto_examples/classification/images/sphx_glr_plot_classifier_comparison_001.png
    :class: sphx-glr-single-img





.. code-block:: python

    print(__doc__)


    # Code source: Gaël Varoquaux
    #              Andreas Müller
    # Modified for documentation by Jaques Grobler
    # License: BSD 3 clause

    import numpy as np
    import matplotlib.pyplot as plt
    from matplotlib.colors import ListedColormap
    from sklearn.model_selection import train_test_split
    from sklearn.preprocessing import StandardScaler
    from sklearn.datasets import make_moons, make_circles, make_classification
    from sklearn.neural_network import MLPClassifier
    from sklearn.neighbors import KNeighborsClassifier
    from sklearn.svm import SVC
    from sklearn.gaussian_process import GaussianProcessClassifier
    from sklearn.gaussian_process.kernels import RBF
    from sklearn.tree import DecisionTreeClassifier
    from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier
    from sklearn.naive_bayes import GaussianNB
    from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis

    h = .02  # step size in the mesh

    names = ["Nearest Neighbors", "Linear SVM", "RBF SVM", "Gaussian Process",
             "Decision Tree", "Random Forest", "Neural Net", "AdaBoost",
             "Naive Bayes", "QDA"]

    classifiers = [
        KNeighborsClassifier(3),
        SVC(kernel="linear", C=0.025),
        SVC(gamma=2, C=1),
        GaussianProcessClassifier(1.0 * RBF(1.0)),
        DecisionTreeClassifier(max_depth=5),
        RandomForestClassifier(max_depth=5, n_estimators=10, max_features=1),
        MLPClassifier(alpha=1),
        AdaBoostClassifier(),
        GaussianNB(),
        QuadraticDiscriminantAnalysis()]

    X, y = make_classification(n_features=2, n_redundant=0, n_informative=2,
                               random_state=1, n_clusters_per_class=1)
    rng = np.random.RandomState(2)
    X += 2 * rng.uniform(size=X.shape)
    linearly_separable = (X, y)

    datasets = [make_moons(noise=0.3, random_state=0),
                make_circles(noise=0.2, factor=0.5, random_state=1),
                linearly_separable
                ]

    figure = plt.figure(figsize=(27, 9))
    i = 1
    # iterate over datasets
    for ds_cnt, ds in enumerate(datasets):
        # preprocess dataset, split into training and test part
        X, y = ds
        X = StandardScaler().fit_transform(X)
        X_train, X_test, y_train, y_test = \
            train_test_split(X, y, test_size=.4, random_state=42)

        x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5
        y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5
        xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
                             np.arange(y_min, y_max, h))

        # just plot the dataset first
        cm = plt.cm.RdBu
        cm_bright = ListedColormap(['#FF0000', '#0000FF'])
        ax = plt.subplot(len(datasets), len(classifiers) + 1, i)
        if ds_cnt == 0:
            ax.set_title("Input data")
        # Plot the training points
        ax.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright,
                   edgecolors='k')
        # Plot the testing points
        ax.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm_bright, alpha=0.6,
                   edgecolors='k')
        ax.set_xlim(xx.min(), xx.max())
        ax.set_ylim(yy.min(), yy.max())
        ax.set_xticks(())
        ax.set_yticks(())
        i += 1

        # iterate over classifiers
        for name, clf in zip(names, classifiers):
            ax = plt.subplot(len(datasets), len(classifiers) + 1, i)
            clf.fit(X_train, y_train)
            score = clf.score(X_test, y_test)

            # Plot the decision boundary. For that, we will assign a color to each
            # point in the mesh [x_min, x_max]x[y_min, y_max].
            if hasattr(clf, "decision_function"):
                Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()])
            else:
                Z = clf.predict_proba(np.c_[xx.ravel(), yy.ravel()])[:, 1]

            # Put the result into a color plot
            Z = Z.reshape(xx.shape)
            ax.contourf(xx, yy, Z, cmap=cm, alpha=.8)

            # Plot the training points
            ax.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright,
                       edgecolors='k')
            # Plot the testing points
            ax.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm_bright,
                       edgecolors='k', alpha=0.6)

            ax.set_xlim(xx.min(), xx.max())
            ax.set_ylim(yy.min(), yy.max())
            ax.set_xticks(())
            ax.set_yticks(())
            if ds_cnt == 0:
                ax.set_title(name)
            ax.text(xx.max() - .3, yy.min() + .3, ('%.2f' % score).lstrip('0'),
                    size=15, horizontalalignment='right')
            i += 1

    plt.tight_layout()
    plt.show()

**Total running time of the script:** ( 0 minutes  7.916 seconds)


.. _sphx_glr_download_auto_examples_classification_plot_classifier_comparison.py:


.. only :: html

 .. container:: sphx-glr-footer
    :class: sphx-glr-footer-example



  .. container:: sphx-glr-download

     :download:`Download Python source code: plot_classifier_comparison.py <plot_classifier_comparison.py>`



  .. container:: sphx-glr-download

     :download:`Download Jupyter notebook: plot_classifier_comparison.ipynb <plot_classifier_comparison.ipynb>`


.. only:: html

 .. rst-class:: sphx-glr-signature

    `Gallery generated by Sphinx-Gallery <https://sphinx-gallery.readthedocs.io>`_