sklearn.cluster
.estimate_bandwidth¶
-
sklearn.cluster.
estimate_bandwidth
(X, quantile=0.3, n_samples=None, random_state=0, n_jobs=None)[source]¶ Estimate the bandwidth to use with the mean-shift algorithm.
That this function takes time at least quadratic in n_samples. For large datasets, it’s wise to set that parameter to a small value.
Parameters: - X : array-like, shape=[n_samples, n_features]
Input points.
- quantile : float, default 0.3
should be between [0, 1] 0.5 means that the median of all pairwise distances is used.
- n_samples : int, optional
The number of samples to use. If not given, all samples are used.
- random_state : int, RandomState instance or None (default)
The generator used to randomly select the samples from input points for bandwidth estimation. Use an int to make the randomness deterministic. See Glossary.
- n_jobs : int or None, optional (default=None)
The number of parallel jobs to run for neighbors search.
None
means 1 unless in ajoblib.parallel_backend
context.-1
means using all processors. See Glossary for more details.
Returns: - bandwidth : float
The bandwidth parameter.