sklearn.datasets
.make_hastie_10_2¶
-
sklearn.datasets.
make_hastie_10_2
(n_samples=12000, random_state=None)[source]¶ Generates data for binary classification used in Hastie et al. 2009, Example 10.2.
The ten features are standard independent Gaussian and the target
y
is defined by:y[i] = 1 if np.sum(X[i] ** 2) > 9.34 else -1
Read more in the User Guide.
Parameters: - n_samples : int, optional (default=12000)
The number of samples.
- random_state : int, RandomState instance or None (default)
Determines random number generation for dataset creation. Pass an int for reproducible output across multiple function calls. See Glossary.
Returns: - X : array of shape [n_samples, 10]
The input samples.
- y : array of shape [n_samples]
The output values.
See also
make_gaussian_quantiles
- a generalization of this dataset approach
References
[1] T. Hastie, R. Tibshirani and J. Friedman, “Elements of Statistical Learning Ed. 2”, Springer, 2009.