sklearn.decomposition
.dict_learning¶
-
sklearn.decomposition.
dict_learning
(X, n_components, alpha, max_iter=100, tol=1e-08, method='lars', n_jobs=None, dict_init=None, code_init=None, callback=None, verbose=False, random_state=None, return_n_iter=False, positive_dict=False, positive_code=False)[source]¶ Solves a dictionary learning matrix factorization problem.
Finds the best dictionary and the corresponding sparse code for approximating the data matrix X by solving:
(U^*, V^*) = argmin 0.5 || X - U V ||_2^2 + alpha * || U ||_1 (U,V) with || V_k ||_2 = 1 for all 0 <= k < n_components
where V is the dictionary and U is the sparse code.
Read more in the User Guide.
Parameters: - X : array of shape (n_samples, n_features)
Data matrix.
- n_components : int,
Number of dictionary atoms to extract.
- alpha : int,
Sparsity controlling parameter.
- max_iter : int,
Maximum number of iterations to perform.
- tol : float,
Tolerance for the stopping condition.
- method : {‘lars’, ‘cd’}
lars: uses the least angle regression method to solve the lasso problem (linear_model.lars_path) cd: uses the coordinate descent method to compute the Lasso solution (linear_model.Lasso). Lars will be faster if the estimated components are sparse.
- n_jobs : int or None, optional (default=None)
Number of parallel jobs to run.
None
means 1 unless in ajoblib.parallel_backend
context.-1
means using all processors. See Glossary for more details.- dict_init : array of shape (n_components, n_features),
Initial value for the dictionary for warm restart scenarios.
- code_init : array of shape (n_samples, n_components),
Initial value for the sparse code for warm restart scenarios.
- callback : callable or None, optional (default: None)
Callable that gets invoked every five iterations
- verbose : bool, optional (default: False)
To control the verbosity of the procedure.
- random_state : int, RandomState instance or None, optional (default=None)
If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by np.random.
- return_n_iter : bool
Whether or not to return the number of iterations.
- positive_dict : bool
Whether to enforce positivity when finding the dictionary.
New in version 0.20.
- positive_code : bool
Whether to enforce positivity when finding the code.
New in version 0.20.
Returns: - code : array of shape (n_samples, n_components)
The sparse code factor in the matrix factorization.
- dictionary : array of shape (n_components, n_features),
The dictionary factor in the matrix factorization.
- errors : array
Vector of errors at each iteration.
- n_iter : int
Number of iterations run. Returned only if return_n_iter is set to True.