sklearn.kernel_approximation
.Nystroem¶
-
class
sklearn.kernel_approximation.
Nystroem
(kernel='rbf', gamma=None, coef0=None, degree=None, kernel_params=None, n_components=100, random_state=None)[source]¶ Approximate a kernel map using a subset of the training data.
Constructs an approximate feature map for an arbitrary kernel using a subset of the data as basis.
Read more in the User Guide.
Parameters: - kernel : string or callable, default=”rbf”
Kernel map to be approximated. A callable should accept two arguments and the keyword arguments passed to this object as kernel_params, and should return a floating point number.
- gamma : float, default=None
Gamma parameter for the RBF, laplacian, polynomial, exponential chi2 and sigmoid kernels. Interpretation of the default value is left to the kernel; see the documentation for sklearn.metrics.pairwise. Ignored by other kernels.
- coef0 : float, default=None
Zero coefficient for polynomial and sigmoid kernels. Ignored by other kernels.
- degree : float, default=None
Degree of the polynomial kernel. Ignored by other kernels.
- kernel_params : mapping of string to any, optional
Additional parameters (keyword arguments) for kernel function passed as callable object.
- n_components : int
Number of features to construct. How many data points will be used to construct the mapping.
- random_state : int, RandomState instance or None, optional (default=None)
If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by np.random.
Attributes: - components_ : array, shape (n_components, n_features)
Subset of training points used to construct the feature map.
- component_indices_ : array, shape (n_components)
Indices of
components_
in the training set.- normalization_ : array, shape (n_components, n_components)
Normalization matrix needed for embedding. Square root of the kernel matrix on
components_
.
See also
RBFSampler
- An approximation to the RBF kernel using random Fourier features.
sklearn.metrics.pairwise.kernel_metrics
- List of built-in kernels.
References
- Williams, C.K.I. and Seeger, M. “Using the Nystroem method to speed up kernel machines”, Advances in neural information processing systems 2001
- T. Yang, Y. Li, M. Mahdavi, R. Jin and Z. Zhou “Nystroem Method vs Random Fourier Features: A Theoretical and Empirical Comparison”, Advances in Neural Information Processing Systems 2012
Examples
>>> from sklearn import datasets, svm >>> from sklearn.kernel_approximation import Nystroem >>> digits = datasets.load_digits(n_class=9) >>> data = digits.data / 16. >>> clf = svm.LinearSVC() >>> feature_map_nystroem = Nystroem(gamma=.2, ... random_state=1, ... n_components=300) >>> data_transformed = feature_map_nystroem.fit_transform(data) >>> clf.fit(data_transformed, digits.target) ... # doctest: +NORMALIZE_WHITESPACE LinearSVC(C=1.0, class_weight=None, dual=True, fit_intercept=True, intercept_scaling=1, loss='squared_hinge', max_iter=1000, multi_class='ovr', penalty='l2', random_state=None, tol=0.0001, verbose=0) >>> clf.score(data_transformed, digits.target) # doctest: +ELLIPSIS 0.9987...
Methods
fit
(X[, y])Fit estimator to data. fit_transform
(X[, y])Fit to data, then transform it. get_params
([deep])Get parameters for this estimator. set_params
(**params)Set the parameters of this estimator. transform
(X)Apply feature map to X. -
__init__
(kernel='rbf', gamma=None, coef0=None, degree=None, kernel_params=None, n_components=100, random_state=None)[source]¶ Initialize self. See help(type(self)) for accurate signature.
-
fit
(X, y=None)[source]¶ Fit estimator to data.
Samples a subset of training points, computes kernel on these and computes normalization matrix.
Parameters: - X : array-like, shape=(n_samples, n_feature)
Training data.
-
fit_transform
(X, y=None, **fit_params)[source]¶ Fit to data, then transform it.
Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.
Parameters: - X : numpy array of shape [n_samples, n_features]
Training set.
- y : numpy array of shape [n_samples]
Target values.
Returns: - X_new : numpy array of shape [n_samples, n_features_new]
Transformed array.
-
get_params
(deep=True)[source]¶ Get parameters for this estimator.
Parameters: - deep : boolean, optional
If True, will return the parameters for this estimator and contained subobjects that are estimators.
Returns: - params : mapping of string to any
Parameter names mapped to their values.
-
set_params
(**params)[source]¶ Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form
<component>__<parameter>
so that it’s possible to update each component of a nested object.Returns: - self