sklearn.metrics
.explained_variance_score¶
-
sklearn.metrics.
explained_variance_score
(y_true, y_pred, sample_weight=None, multioutput='uniform_average')[source]¶ Explained variance regression score function
Best possible score is 1.0, lower values are worse.
Read more in the User Guide.
Parameters: - y_true : array-like of shape = (n_samples) or (n_samples, n_outputs)
Ground truth (correct) target values.
- y_pred : array-like of shape = (n_samples) or (n_samples, n_outputs)
Estimated target values.
- sample_weight : array-like of shape = (n_samples), optional
Sample weights.
- multioutput : string in [‘raw_values’, ‘uniform_average’, ‘variance_weighted’] or array-like of shape (n_outputs)
Defines aggregating of multiple output scores. Array-like value defines weights used to average scores.
- ‘raw_values’ :
Returns a full set of scores in case of multioutput input.
- ‘uniform_average’ :
Scores of all outputs are averaged with uniform weight.
- ‘variance_weighted’ :
Scores of all outputs are averaged, weighted by the variances of each individual output.
Returns: - score : float or ndarray of floats
The explained variance or ndarray if ‘multioutput’ is ‘raw_values’.
Notes
This is not a symmetric function.
Examples
>>> from sklearn.metrics import explained_variance_score >>> y_true = [3, -0.5, 2, 7] >>> y_pred = [2.5, 0.0, 2, 8] >>> explained_variance_score(y_true, y_pred) # doctest: +ELLIPSIS 0.957... >>> y_true = [[0.5, 1], [-1, 1], [7, -6]] >>> y_pred = [[0, 2], [-1, 2], [8, -5]] >>> explained_variance_score(y_true, y_pred, multioutput='uniform_average') ... # doctest: +ELLIPSIS 0.983...