sklearn.metrics.pairwise
.laplacian_kernel¶
-
sklearn.metrics.pairwise.
laplacian_kernel
(X, Y=None, gamma=None)[source]¶ Compute the laplacian kernel between X and Y.
The laplacian kernel is defined as:
K(x, y) = exp(-gamma ||x-y||_1)
for each pair of rows x in X and y in Y. Read more in the User Guide.
New in version 0.17.
Parameters: - X : array of shape (n_samples_X, n_features)
- Y : array of shape (n_samples_Y, n_features)
- gamma : float, default None
If None, defaults to 1.0 / n_features
Returns: - kernel_matrix : array of shape (n_samples_X, n_samples_Y)